In this proposal, simultaneous enzymatic hydrolysis and self-assembly (enzymatic-assembly) was proposed to prepare novel peptide-based nanomaterials. To establish novel enzymatic assembly systems, understand the reaction-assembly mechanisms, and obtain novel peptide-based functional materials, we plan to focus on the study of the design of enzymatic assembly systems, process control and enhancement, the analysis of the mechanism, and the applications of these materials. (1) Process design and control: we plan to design some novel peptide-based molecules and their corresponding enzymatic-assembly processes, as well as to control and improve the process based on the mass transfer, enzymatic reaction and supramolecular self-assembly. (2) Mechanism analysis and dynamics: we plan to test the thermodynamics data of the enzymatic-assembly process, and analysis the feature of enzyme action and the self-assembly. In addition, we also try to characterize the change in the peptide products and the structure of assemblies, as well as to establish a suitable dynamical model. (3) Applications and performance improvement: we plan to investigate the applications of these synthesized nanomaterials in drug delivery and sensors (optical and electrochemical sensors), as well as to improve the application performance, aiming of establishing some novel drug delivery systems and sensor analysis methods. The methodologies in this project and its prospective results can open an avenue for the design of new enzymatic-assembly systems for the nanomaterials synthesis, process control for enzymatic-assembly, and the applications of peptide-based materials.
本项目采用酶催化组装合成新型肽类纳米材料,以酶催化组装体系设计、过程调控与强化、机理剖析及材料应用为研究主线,旨在构建多种肽类分子酶催化组装新体系、新过程,阐明肽类分子酶催化组装机制,获得多种新型肽类纳米材料,并完成其应用。具体研究中:①体系设计和过程调控:设计多种新型肽类分子及酶催化组装新体系;从传质、酶催化和分子组装三方面,设计酶催化组装过程调控与强化策略,确定关键参数;②机理剖析和动力学:测试计算酶催化组装过程的热力学参数,剖析酶催化特性和分子组装机制;跟踪酶催化组装过程中产物含量和组装体结构的变化,构建动力学模型;③材料应用和性能强化:构建载药和传感分析(光学、电化学)应用体系,并设计材料性能强化策略,提升材料的应用潜力,建立多种药物缓控释系统和传感分析方法。本项目的研究方法和成果可为新型肽类分子酶催化组装设计、过程调控/强化以及肽类纳米材料应用开发提供有益的理论指导与实践参考。
本项目聚焦于多肽超分子自组装,提出了酶促自组装、化学反应诱导自组装的新思路,并引入多糖、界面、阳离子、温度等因素,调控多肽超分子自组装行为,获得了系列多肽类自组装纳米材料,深入理解了多肽组装机制,探索了该材料在药物传递、仿酶催化等领域的应用。此外,理性设计合成了Fmoc-FWK、Fc-FF新型多肽类分子,通过pH值、对离子诱导并调控其手性自组装行为,获得了多种不同结构的肽类手性纳米材料。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
基于酶催化的肽类分子动态自组装研究
真菌环状缩肽合成酶的催化机制及新型环状缩肽的重构合成研究
新型纳米微结构材料的合成、组装、结构和性能研究
液相合成和表征多组分异质纳米组装复合光催化材料