In 2005, Lim and Qi independently proposed the definitions of eigenvalues for higher order tensors. Since then, spectral theory of hypergraphs has developed rapidly. Moreover, the establishment of the Perron-Frobenius theorem has made a theoretical foundation on the spectral theory of hypergraphs. In this project, we are studying the H-spectral radius of 3-uniform hypergraphs, which consists of the following two parts:.1、The lower bound of the H-spectral radius for MV-tree and the ordering .2、The upper bound of the H-spectral radius of the maximal planar 3-uniform hypergraphs.. Spectra theory of hypergraphs is a new topic, where there are many new problems need to be solved. In this project, we are aiming to obtain some new methods on 3-uniform hypergraphs and preparing on the research of the spectral theory of k-uniform hypergraphs.
自2005年,Lim和祁力群教授分别提出张量特征值的概念后,超图的谱理论研究得到了迅速地发展。同时,非负张量的Perron-Frobenius 定理的完善为超图的谱理论研究提供了坚实的理论基础。本项目主要研究3-一致超图的H-谱半径问题,包括以下两个方面:.(1) 研究MV-树邻接H-谱半径的下界以及排序。.(2) 研究极大3-一致可平面超图的邻接H-谱半径的上界,并刻画达到该上界的极图。. 因为超图的张量谱研究是一个新的研究领域,其中有许多问题有待解决。我们希望通过本项目的研究工作,能够在理论研究和方法创新上有所突破,为进一步k-一致超图的谱问题研究奠定研究基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
Robust H-infinity Control for ICPT Process With Coil Misalignment and Time Delay: A Sojourn-Probability-Based Switching Case
具有随机多跳时变时延的多航天器协同编队姿态一致性
扩散张量成像对多发性硬化脑深部灰质核团纵向定量研究
Modelling of phase transformations induced by thermo-mechanical loads considering stress-strain effects in hard milling of AISI H13 steel
少模光纤受激布里渊散射效应理论研究
超图的解析连通度与邻接H-谱半径相关问题研究
超图的张量谱半径研究
图与超图的谱Turán型问题
图与超图分解及谱形式极值问题