Coronary angiography is the "gold standard" for evaluating cardiovascular stenosis, but it is only morphological evaluation of coronary stenosis, not functional stenosis evaluation of the impact on myocardial perfusion. Fractional Flow Reserve (FFR) is an effective means to determine the functional coronary stenosis on myocardial perfusion. But the current FFR catheter based on a single rigid pressure sensor can only be pulled back and forth to realize the measurement of the stenosis cardiovascular disease, which affects measurement accuracy and extends the in vivo measurement time. This project proposes smart micro-catheter for monitoring cardio-vascular function stenosis based on micro-bubble pressure sensor. This smart micro-catheter has multi-point micro-bubble pressure sensors, which does not need to pull back and forth and just takes one measurement to detect the coronary stenosis. The new type of micro-bubble pressure sensors are studied, which are based on the three-electrode system to measure the pressure. The method of fixing the micro-pressure sensors on the wire surface is investigated. In order to evaluate the performance of the smart micro-cathether, the cardiovascular simulation platform will be established, which is based on the flow dynamic model of elastic cavity theory and the combination of numerical and experimental analyses. Finally, the animal experiments verify the feasibility of this cathether. Through theoretical analyses, design, process and experimental research, the key issues of the theory and experiment of the smart cathether will be addressed, which will provide a new method for the evaluation of cardiovascular function stenosis.
冠脉造影是评价心血管狭窄的"金标准",但它仅从形态学评价冠脉狭窄,无法功能性评价狭窄对心肌血流灌注的影响。血流分数储备测定(FFR)是功能性判断冠脉狭窄对心肌灌注的有效手段。但目前基于单个刚性压力传感器的FFR导丝只能通过连续回拉判定心血管病变狭窄程度,影响测量精度和延长体内测量时间。本项目提出一种基于MEMS微气泡压力传感器的心血管功能性狭窄监测智能导丝,该导丝采用多点微气泡压力传感器,无需连续回拉多次测量,一次可同时测定冠脉的狭窄。研究一种新型的微气泡压力传感器,基于三电极理论的阻抗来测量压力变化,探索微压力传感器在导线表面的形成方法。研究用于评价导丝性能的心血管模拟实验平台,基于弹性腔理论建立血流动力学模型,并将数值模拟与实验相结合。最后通过动物实验验证导线的可行性。通过相关理论分析、设计、工艺和实验研究,解决该智能导丝的理论和实验的关键问题,为评价心血管功能性狭窄提供一种新方法。
冠脉造影是评价心血管狭窄的"金标准",但它仅从形态学评价冠脉狭窄,无法功能性评价狭窄对心肌血流灌注的影响。血流分数储备测定(FFR)是功能性判断冠脉狭窄对心肌灌注的有效手段。但目前基于单个刚性压力传感器的FFR导丝只能通过连续回拉判定心血管病变狭窄程度,影响测量精度和延长体内测量时间。本项目提出一种基于MEMS微气泡压力传感器的心血管功能性狭窄监测智能导丝,该导丝采用多点微气泡压力传感器,无需连续回拉多次测量,一次可同时测定冠脉的狭窄。研究一种新型的微气泡压力传感器,基于三电极理论的阻抗来测量压力变化,探索微压力传感器在导线表面的形成方法。研究用于评价导丝性能的心血管模拟实验平台,基于弹性腔理论建立血流动力学模型,并将数值模拟与实验相结合。最后通过动物实验验证导丝的可行性。通过相关理论分析、设计、工艺和实验研究,解决该智能导丝的理论和实验的关键问题,为评价心血管功能性狭窄提供一种新方法。在项目执行期内主要发表SCI论文7 篇,申请专利3项(授权专利1项),主要培养研究士生3名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析
用晶格Boltzmann方法研究功能性微气泡生成机制
虚拟心血管介入手术系统中的血管和导丝建模方法研究
基于非接触测量的超高温MEMS压力传感器基础研究
GPa量级MEMS耐高温超高压力传感器