Quantum information science as emerging cross-disciplinary in recent years has achieved rapid development and received considerable attention. Quantum information and quantum communication were included in the national major scientific research programs. The optical frequency comb as a new measurement technique in quantum information research occupies an important place, but as technology development and improvement of measurement accuracy, measurement quickly approaching the shot noise level. Therefore, have increasingly shown the importance of noise control and quantum manipulation of the optical frequency comb, is expected to soon become an indispensable part of the optical frequency comb. This project plans to study the quantum properties of the optical frequency comb, and experimentally manipulate it at the quantum level. Specifically, a squeezed states generated by optical frequency comb will be squeezed again using optical parametric amplifiers to improve the quality of squeeze, we call this technique squeeze purifying. And we will also demonstrate the rotation of the squeezing component in order to transform one squeezed state to another one. Take squeezed states produced by optical frequency comb as the research object, perform further squeezing and squeeze rotation of a given squeezed state squeezed states have not been reported, and is important on the quantum properties research of optical frequency comb.
量子信息科学作为新兴的交叉领域近几年来取得了迅猛发展并受到了广泛关注,我国也将量子信息与量子通讯列入重大科学研究计划。光学频率梳作为新兴的测量、计量手段在量子信息研究中占有重要的一席之地,但随着技术的发展、测量精度的提高,测量很快就逼近散粒噪声水平。因此对光学频率梳的噪声控制及量子操控的重要性日益显现出来,预计很快将成为光学频率梳相关研究中不可缺少的环节,国外已有研究组开展了对光学频率梳进行压缩的研究。本项目计划对光学频率梳的量子特性进行研究,并在实验上实现对光学频率梳在量子层面进行操控,使用光学参量放大器对光学频率梳所产生的压缩态进行二次压缩以提高压缩质量、纯化压缩并且旋转压缩分量以实现将一种压缩态转换为另一种压缩态的实验研究。以光学频率梳的压缩态作为研究对象、把压缩态进行二次压缩、压缩旋转的研究目前国内外未见报道,有着广阔的前景,同时也对光学频率梳量子特性的研究有重要意义。
摘要: 飞秒光学频率梳技术的实现和发展为物理学基础研究提供了重要帮助,对科学发展意义重大。其可用于对时间、频率和长度的超高精度测量,在导航定位、引力波探测、光通信等领域有着重要的作用。国内外已有一些研究组将工作方向聚焦到飞秒光梳的量子特性上来,但是在对飞秒光梳进行量子操控方面依然有部分空白。本项目对795nm(Rb原子的D1吸收线)波长的飞秒脉冲的量子操控展开理论及实验研究。对LBO晶体的I类临界相位匹配角进行计算并使用其进行倍频产生397.5nm的抽运光,倍频效率40%。计算了以压缩态光场为注入场的光学参量腔的输出特性,提出了对飞秒光梳完成量子操控的理论模型。搭建完成了两镜驻波光学参量放大器,并对不同光路高度下的系统稳定性进行了研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于多模态信息特征融合的犯罪预测算法研究
双吸离心泵压力脉动特性数值模拟及试验研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
感应不均匀介质的琼斯矩阵
基于飞秒光学频率梳实现超冷分子量子态精密相干操控的研究
波长可调中红外飞秒频率梳的研究
极紫外高重复频率飞秒激光频率梳的产生研究
基于光纤延迟线稳频的飞秒激光频率梳