Lightweight hybrid sandwich structures with fiber-metal laminate face sheets and graded cellular core are new multifunctional structures with lightweight, good toughness, impact resistance characteristics, and open a wide range of promising applications in spacecraft, aircraft, ship, high-speed train and vehicle fields. Based on the explosion experiments, and combined with the theoretical analysis and numerical simulations, the project would investigate the dynamic response of the lightweight hybrid sandwich structures with fiber-metal laminate face sheets and graded cellular core subjected to blast loading. The dynamic deformation and failure modes are given, and the analytical models are developed to predict the dynamic response. Energy absorption distributions of each components are discussed for the different deformation and failure modes, and deformation and failure mechanisms and energy absorption mechanisms of hybrid sandwich structures with fiber-metal laminate face sheets and graded cellular metal core are revealed. The propagation rules of the stress wave in the fiber-metal laminate face sheets and graded cellular cores are clarified. The corresponding dynamic failure criteria of hybrid sandwich structures with fiber-metal laminate face sheets and graded cellular metal core are obtained. The rules between laminating of fiber-metal laminate face sheets, density-graded distributions of graded cellular cores and the impact resistance of sandwich structures are obtained. In order to provide the technical support for the engineering applications, the impact resistance of lightweight hybrid sandwich structures with fiber-metal laminate face sheets and graded cellular core is evaluated, and the optimization design schemes of microstructure of the materials and macrostructure of the structures are proposed and verified by experiments.
轻质纤维金属混杂梯度多孔夹芯结构是一种轻质、强韧、抗冲击新型多功能结构,在航天航空、舰船、高铁、汽车等领域具有广泛应用前景。本项目拟以爆炸冲击实验为基础,结合理论分析和数值计算,研究轻质纤维金属混杂梯度多孔夹芯结构在爆炸冲击作用下的动态响应,给出其动态变形和失效模式,建立其爆炸冲击响应的理论分析模型,探讨不同变形和失效模式下各组成部分的能量吸收分配,揭示其变形和失效机制及能量吸收机理,阐明应力波在纤维金属层合面板和梯度多孔金属夹芯层中的传播规律,得到夹芯结构相应的动态失效准则,并获得纤维金属层合面板铺层、梯度多孔夹芯层的密度梯度分布与其抗爆炸冲击性能之间的内在规律。评价纤维金属混杂梯度多孔夹芯结构抗爆炸冲击性能,提出材料微结构和宏观结构的优化设计方案并进行实验验证,为轻质纤维金属混杂梯度多孔夹芯结构的工程应用提供技术支撑。
以纤维金属层压板(FML)为面板的金属夹芯板可以结合FML面板和夹芯层的优点,具有比强度/比刚度高、重量轻和良好的能量吸收性能的优点。本项目通过理论和数值计算研究了纤维-金属层合泡沫夹芯板在爆炸载荷作用下的动态响应。此外,通过泡沫子弹撞击实验,来替代模拟纤维-金属层合夹芯板在爆炸载荷作用下的动态响应。基于修正的刚塑性材料模型,考虑了复合材料层和金属层体积分数和体积含量,建立了四边固支纤维-金属泡沫夹芯板动态响应的简化理论模型,得到了纤维-金属泡沫夹芯板动态响应的边界和薄膜解。理论预测结果与矩形纤维-金属层合板夹芯板动态响应的数值计算结果吻合较好。讨论了复合材料体积分数、金属层强度与复合材料层强度之比、相对密度和相对强度对结构动态响应的影响。结果表明,纤维-金属夹芯板的最大中心挠度随金属层强度与复合材料层强度之比的增加而增大,随着相对密度、金属体积分数、相对强度的增加而减小。研究了玻璃纤维增强铝合金复合材料层合(GLARE)面板铝蜂窝夹芯板在金属泡沫弹冲击下的动态响应。进行了单次泡沫弹丸冲击试验,研究了GLARE面板蜂窝夹芯板的动态响应。观察了前面板金属层和复合层之间的脱粘、纤维断裂、屈曲、剪切和芯部断裂。此外,还进行了多次泡沫弹丸冲击试验,研究夹芯板的抗冲击性能。进行了数值计算,并与实验结果进行了比较。讨论了脉冲、面板厚度、纤维铺设角度、蜂窝高度、芯壁厚度和蜂窝单元长度对夹芯板抗冲击性能和能量吸收的影响。研究发现,随着面板厚度的增加,背板最大挠度的改善范围逐渐减小。此外,通过增加冲量、减小面板厚度和降低芯部刚度,可以增强夹芯板在金属泡沫弹丸冲击下的能量吸收。这些研究有助于纤维-金属层合夹芯板的抗爆炸冲击设计和工程应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
农超对接模式中利益分配问题研究
特斯拉涡轮机运行性能研究综述
拥堵路网交通流均衡分配模型
低轨卫星通信信道分配策略
轻质梯度金属泡沫夹芯复合结构的爆炸冲击失效与能量吸收机理研究
梯度金属泡沫夹芯复合结构的爆炸冲击能量吸收机理
纤维增强梯度金属泡沫夹芯复合壳的低速冲击失效及其能量吸收机理研究
连续梯度多孔金属夹芯结构的抗冲击性能及失效机理研究