Doping and manufacturing defects both are important means to improve the photocatalytic properties of TiO2-based photocatalysts. Understanding the relaxation of less or mixed coordination bond accurately is crucial to change the electronic structure, spectral and photocatalytic properties of them, which is significant to modulate the light absorption range and photocatalytic activity and design a series of new TiO2 -based photocatalysts. On the basis of our recent progress, this project aims to solve this puzzle by verifying our hypotheses using a combination of theory, measurements, quantum calculations: (1) controlling bond relaxation to localize the quantum pinning and polarization by doping and manufacturing defects; (2) quantum pinning of conduction bands and polarization of valence bands will reduce the band gap and modulate the frequency of absorption light; (3) the polarization of conduction bands will reduce the work function to increase the exciton lifetime and reduces the complex probability of it; (4) the pinning of conduction bands will modulate the electronegativity of atom. Calculating the bond lengths, bond angles and bond energy of coordination bond which will associate with the electronic structure and optical properties of systems by first-principles calculation; determining the effects of hydrogen bonds on the optical properties and photocatalytic activity of different co-doped systems by experiments, such as: spectroscopy and photocatalytic etc. Try to develop efficient and controllable H-TiO2-based photocatalysts.
掺杂和制造缺陷是提高TiO2基光催化性能的重要手段。准确理解由于欠配位和混配位键弛豫造成对TiO2的电子结构、光谱和光催化性能的改变是至关重要的。这对调控TiO2基光催化剂的光吸收范围和光催化活性以及促进新型TiO2基光催化剂的研究意义重大。此项目旨在现有工作基础上,通过理论预测、量子计算与实验标定相结合验证我们的预测:(1)通过掺杂和制造缺陷控制键弛豫以实现局域量子钉扎和极化;(2)导带的量子钉扎和价带的极化可以减小禁带宽度,已调控吸收光的频率;(3)导带极化可以降低功函数以提高激子寿命和降低复合;(4)导带钉扎从而调制电负性。通过第一原理计算确定氢-金属-非金属配位键的键长、键角、键能、以及和电子结构和光学性质等对应关系;通过光谱分析及光催化等实验标定氢键对不同共掺杂体系光学性能及光催化活性的影响。力争开发高效、性能可控以H-TiO2为基的光催化剂。
掺杂和制造缺陷是提高TiO2基光催化性能的重要手段。准确理解由于欠配位和混配位键弛豫造成对TiO2的电子结构、光谱和光催化性能的改变是至关重要的。这对调控TiO2基光催化剂的光吸收范围和光催化活性以及促进新型TiO2基光催化剂的研究意义重大。此项目旨在现有工作基础上,通过理论预测、量子计算与实验标定相结合验证我们的预测:(1)通过掺杂和制造缺陷控制键弛豫以实现局域量子钉扎和极化;(2)导带的量子钉扎和价带的极化可以减小禁带宽度,已调控吸收光的频率;(3)导带极化可以降低功函数以提高激子寿命和降低复合;(4)导带钉扎从而调制电负性。通过第一原理计算确定氢-金属-非金属配位键的键长、键角、键能、以及和电子结构和光学性质等对应关系;通过光谱分析及光催化等实验标定氢键对不同共掺杂体系光学性能及光催化活性的影响。力争开发高效、性能可控以H-TiO2为基的光催化剂。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于天然气发动机排气余热回收系统的非共沸混合工质性能分析
基于卷积神经网络的链接表示及预测方法
苹果酸基脂肪共聚酯反应性共混制备超韧聚乳酸共混物
Preparation of Superhydrophobic and Superoleophilic Corn Straw Fibers Oil Absorbents and Application to the Removal of Spilled Oil from Water
50GHz宽带混沌信号发生器
纳米固体表面与界面的键弛豫理论
共轭大π键与TiO2光催化剂的协同作用机理及光催化活性研究
镍基纳米复合薄膜力学性能的键弛豫理论及实验研究
氢键(O:H-O)受激弛豫势能路径的键弛豫理论与声子谱学实验标定