The complex analytical dynamics is one of the most important fields in morden mathematics. There are many challenging problems in this field to be solved. Recently, the quasisymmetric geometry on the fractal sets has been made important progress. This project will study problems on the topology and quasiconformal geometry of the Julia sets and parameter space of rational dynamics by combining these two fields. The researches include: the topology of parameter plane of McMullen rational maps; the quasiconformal classification of Julia sets of McMullen maps and their quasisymmetrical uniformization and rigidity; the Hausdorff dimensions and the Ahlfors regular conformal dimensions of Julia sets; the quasisymmetrical uniformization of fractal sets such as the Cantor quasicircles; and the regularities of some metric spaces. In this project, we will make some breakthroughs and solve some open problems, such as the problem posed by Devaney on the parameter plane of McMullen maps.
复解析动力系统是现代数学研究的主流方向之一,有大量具有挑战性的问题有待解决,近年来分形集上的拟对称几何也取得了重要的进展。本项目将两者结合起来,研究有理函数动力系统中的Julia集和参数空间的拓扑和拟共形几何问题,主要研究:McMullen函数族参数平面的拓扑和非逃逸集的局部连通性,McMullen函数族及更一般有理函数的Julia集的拟共形分类以及拟对称单值化和刚性,Julia集的 Hausdorff维数和Ahlfors正则共形维数,一般的分形集合如Cantor拟圆周的拟对称单值化,以及某些度量空间的正则性研究。本项目将在上述研究中解决几个公开问题和猜想,如Devaney关于McMullen函数族参数平面的公开问题,并取在各个方面都取得一些突破性进展。
复解析动力系统是现代数学研究的主流方向之一,有大量具有挑战性的问题有待解决,近年来分形集上的拟对称几何也取得了重要的进展。本项目将两者结合起来,研究有理函数动力系统中的Julia集和参数空间的拓扑和拟共形几何问题,主要研究成果有:证明了McMullen 函数族参数平面所有双曲分支都是Jordan区域,回答了Devaney 关于McMullen 函数族参数平面的公开问题,并对一类更广泛的广义McMullen函数的Julia集的连通性给出了完整描述。给出了包含McMullen 函数族在内的具有Cantor圆周Julia 集的有理函数的拓扑和拟对称共轭下的完整分类。讨论了具有广义Sierpinski地毯分形的拟对称刚性,证明其上的拟对称自映射只能是等距变换。给出了重整化变换Julia集的Hausdorff维数的渐近公式。另外,我们还研究了非阿基米德域上离散群的极限集的度量性质,取得了一些成果。比较项目计划书,我们很好地完成了项目预定任务。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
连通自相似分形的拓扑学与拟共形几何学
离散群几何与拟共形映射
拓扑动力系统和分形几何中的若干问题
复动力系统与拟共形映射