The mechanism and technology of widely tunable femtosecond optical parametric oscillator based on the ultra-fast four-wave mixing in the silicon waveguide will be investigated in this project. Firstly, the physical mechanism of the femtosecond optical parametric oscillator in the silicon waveguide will be studied systemically from the theoretical standpoint,and the simulation model of the femtosecond optical parametric oscillator in the silicon waveguide will be built. The novel way of optimizing waveguide's multi-parameters achieved single mode propagation will be explored numerically. The key method and technology of broadband phase matching in silicon waveguide will be developed through the management of the dispersion and nonlinearity. Secondly, the key method and technology of the femtosecond optical parametric oscillator based on silicon waveguide, which exhibits a compact configuration with lower threshold and high conversion efficiency, will be investigated experimentally. The femtosecond pulse oscillation in the optical parametric oscillator will be realized using the high nonlinear silicon waveguide as the parametric gain material. Moreover, the dispersion engineering method can be adopted to obtain the generation and stable propagation of the femtosecond pulse in the optical parametric oscillator. The means of pumping synchronous and cavity adjusting can be used to extend the tunable bandwidth of the optical parametric oscillator.Finally, the highly integrated and widely tunable femtosecond optical parametric oscillator in the silicon waveguide in the telecommunication band will be researched. These research results of this project can provide a kind of novel and compact optical source for the fields of ultra-fast optics, integrated optics, all-optical information processing and quantum communication, and promote the development of these domains. Simultaneously, the theory of nonlinear silicon photonics and novel devices based on the silicon photonics will also be developed.
研究基于硅波导中超快四波混频效应的宽调谐飞秒光参量振荡器的机理与技术。首先,从理论上系统地研究飞秒硅波导光参量振荡器的物理机制,建立硅波导飞秒光参量振荡器的理论模型,通过数值模拟仿真研究基于硅波导结构多参数优化实现单模传输的方法,以及通过对色散和非线性的调控实现硅波导超宽带四波混频相位匹配的关键方法。其次,从实验上研究装置简单的低阈值和高效率的硅波导光参量振荡器、利用硅波导增益介质实现飞秒脉冲光参量振荡、用硅波导色散管理的方法来实现飞秒脉冲的形成及稳定传输、扩展和控制硅波导参量振荡器的可调谐带宽以及调谐参量振荡信号光波长等关键方法与技术。最后,研究1.5μm波段的宽调谐飞秒硅波导光参量振荡器技术。本项目研究将为超快光学、集成光学、全光信息处理和量子通信等研究领域提供新型可集成宽调谐超快光源,并促进这些领域的快速发展,同时发展硅基非线性光子学理论及新型硅光子功能器件,研究意义重大。
近年来,硅光子技术一直是人们在集成光学和全光信号处理领域中的研究热点。宽调谐飞秒硅波导光参量振荡器在超快光学、量子通信、光计算、光网络等应用领域具有重大的应用价值,为集成化、小型化、可调谐飞秒光源的研究提供了一种新的技术手段。本项目开展了硅基波导中光参量振荡器的理论和实验研究,发展建立了基于硅波导的光参量振荡器的理论模型,理论实现了基于硅波导的宽调谐飞秒脉冲产生;理论研究了硅基波导中高效中红外光学参量放大技术;提出并研究了基于硅有机混合沟槽波导的全光波长转换技术;提出并理论研究了基于宽度可调硅波导的频率非简并相位敏感光参量放大技术;理论研究了硅波导中基于相位敏感光参量放大的相位压缩技术;理论研究了硅纳米晶体双沟槽波导中飞秒脉冲超连续谱产生技术;理论研究了中红外波段硅基波导中三光子吸收效应对交叉相位调制效应的影响;理论研究了硅基波导中基于受激斯托克斯拉曼散射的拉曼放大和基于相干反斯托克斯拉曼散射的波长转换技术;实验证明了跑道型硅基微环谐振腔中低功率连续光泵浦的全光波长转换技术;实验研究了硅波导中皮秒脉冲泵浦的全光波长转换技术;实验研究了硅波导中基于自相位调制效应的光谱展宽技术和可调谐光学参量振荡器技术;理论研究了硅波导中基于非线性偏振旋转的太赫兹开关技术;理论研究了基于硅光子晶体波导的太赫兹滤波器和太赫兹波分复用器;理论研究了超材料太赫兹吸收体和太赫兹开关;理论研究了硅基微纳结构中基于光学双稳态的随机共振技术。本项目的研究结果为硅光子技术应用于集成光学、全光信号处理等领域以及相关科学前沿、相关战略高技术与交叉学科的创新发展提供了关键理论和技术基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
感应不均匀介质的琼斯矩阵
基于混合优化方法的大口径主镜设计
三级硅基填料的构筑及其对牙科复合树脂性能的影响
基于干涉型微光纤器件的海水温盐压传感方法研究进展
4PAM-FTN大气光传输系统在弱湍流信道中的误码性能
1.5μm波段宽调谐飞秒光子晶体光纤参量振荡器
宽调谐、窄线宽纳秒脉冲双共振光学参量振荡器技术研究
宽带飞秒激光泵浦的中红外可调谐光参量放大特性研究
全固化掺铥激光同步泵浦的中红外飞秒光参量振荡器