The optical crystal materials, featured with superior ultraviolet or infrared transmittance, high damage threshold and high refractive index features, have important application value in many fields such as aerospace, national defense security, scientific exploration, and green energy. The optical crystal materials are brittle and easy to cleavage fracture, which cause difficulties in ultra-precision processing and restrict the further promotion of complex surface applications. This study focuses on the fundamental research on the complex optical crystal manufacturing method with high precision, low damage and low surface stress. The design theory of close-rotational complex surface is proposed, which provides the promising approach to be manufactured for complex optical crystals. The novel method combined with fly-cutting, milling and fast tool server is studied to realize the complex surface manufacturing of optical crystal materials by using high speed ultra-precision cutting technology. The on-machine measurement method based on the combination of white light interferometer and laser detection is proposed to acquire the full spatial frequency surface profile. The optical properties of the system can be greatly improved under compensating the middle and high spatial frequency errors or surface texture in the high speed ultra-precision cutting technique. The surface stress on-machine measurement method based on the polarization analysis in optical frequency for reflective optical materials is also proposed to obtain the distribution of surface stress, which provides theoretical guidance on the processing improvement of optical crystal materials manufacturing. The relative integrated measurement and control system for optical crystal materials complex surface is established.
光学晶体材料具有优越的紫外或红外透过率、高损伤阈值、高折射率等特性,在航空航天、国防安全、科学探索、绿色能源等领域具有重要的应用价值。光学晶体材料易脆裂和解理特性为其高精度制造带来众多困难,也限制了复杂曲面在其应用领域的深入推广。本项目开展光学晶体材料高精度、低损伤、低表面应力的制造基础理论研究,提出近回转复杂曲面及系统设计策略,研究“飞刀-铣削-快刀”组合的超精密高速切削工艺和新方法,实现光学晶体材料复杂曲面成型加工;提出基于白光干涉及激光测量结合的表面形貌原位测量方法,进行加工表面全频段特性分析,结合高速切削方式补偿加工过程的中低频误差或表面纹理,极大地提升系统光学性能;提出偏振分析的光频域反射光学材料表面应力层析原位检测方法,建立基于加工导致的表层/亚表层应力分布规律对超精密切削工艺方法进行理论指导,形成一整套光学晶体材料复杂曲面成型及质量控制制造体系。
光学晶体材料具有优越的紫外或红外透过率、高损伤阈值、高折射率等特性,在航空航天、国防安全、科学探索、绿色能源等领域具有重要的应用价值。光学晶体材料易脆裂和解理特性为其高精度制造带来众多困难,也限制了复杂曲面在其应用领域的深入推广。本项目开展光学晶体材料高精度、低损伤、低表面应力的制造基础理论研究,提出了近回转面的复杂曲面表征方法,通过快刀伺服超精密车削提升切削速度,实现了光学晶体复杂曲面高效加工,实现了典型红外光学复杂曲面透镜加工,完成光学表面非接触表面形貌原位测量与分析方法,测量面形精度达到0.1μm。进行加工表面全频段特性分析,研究了加工过程的中低频误差与光学复杂曲面性能之间的关系,有效指导加工过程,提升了系统光学性能;提出相似穆勒矩阵双折射解算方法,采用磁光旋转与多态自校准方法,系统重复性达0.000227rad,对应双折射光程差为±0.0560nm。形成一整套光学晶体材料复杂曲面成形及质量控制制造体系。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
钢筋混凝土带翼缘剪力墙破坏机理研究
气载放射性碘采样测量方法研究进展
感应不均匀介质的琼斯矩阵
当归补血汤促进异体移植的肌卫星细胞存活
光学自由曲面的高精度原位偏折测量技术研究
大尺寸复杂曲面高效高精度轮廓测量关键问题研究
基于原位检测的复杂曲面加工-测量的闭环加工方法研究
面向接触式原位测量的复杂曲面加工精度检测方法研究