Aiming for the high reliability drives such as aerospace and eletrical vehicle applications, this project propose a fault tolerant multiple three phase fractional slot concentrated winding permanent magnet synchronous reluctance machine drive system. On one hand, this machine has the merits of non-overlapped and short end-windings as the fractional slot concentrated winding. On the other hand, the permanent magnet usage and the resultant back electromotive force are reduced owing to the permanent magnet synchronous reluctance rotor configuration, meanwhile, the permanent magnet torque and reluctance torque are comprehensively regulated to enhance the torque output. This machine utilizes the multiple three phase configuration to reduce the magnetomotive force harmonics and to realize the fault tolerant operation. This project will perform the following investigations focusing on the machine: analyze the machine operation theory and fault characteristics, propose integrated global optimization design method for the fault tolerant machine; according to the machine fault characteristics, research on the turn fault diagnosis and fault location identification technologies based on low frequency and high frequency fault signals; aiming for the post fault operation, research on the positive and negative sequence current controllers, enhanced field weakening technique and turn fault current mitigation method; establish machine drive prototype and experimental test bench system, test the machine normal operation performance and fault tolerant capabilities, and summarize the general rules for this kind of machine system. This project is a frontier topic for the Electrical Engineering and high reliability drives, it will lay the basis of theory and technique for the aerospace and electrical vehicle applications.
针对航空航天、电动汽车等高可靠驱动领域,本项目创造性地提出一种多三相分数槽集中绕组永磁磁阻容错电机驱动系统。该电机既具有分数槽集中绕组互不交叠、端部长度短的优点,又能利用永磁磁阻转子结构减少永磁体用量降低反电势,综合调配永磁转矩和磁阻转矩提升转矩输出,同时该电机采用多三相绕组结构降低绕组磁动势谐波并实现容错运行。本项目将围绕该电机系统开展以下研究:分析电机运行机理和故障特性,提出容错电机的综合全局优化设计方法;根据电机故障特性,研究基于低频和高频故障特征信号的匝间短路故障诊断及其定位方法;针对电机故障后容错运行,研究正负序双电流控制器、增强型弱磁控制技术和匝间短路电流抑制方法;构建原型样机与实验验证系统,测试电机正常运行性能和故障容错能力,并归纳该类电机系统一般规律。本项目是电气工程学科及高可靠驱动领域的前沿课题,将为该类电机系统在航空航天、电动汽车领域的应用奠定理论和技术基础。
本项目系统研究了一种新颖的多三相分数槽集中绕组永磁磁阻电机,该电机一方面具有分数槽集中绕组互不交叠,端部绕组短的优点,另一方面利用多三相绕组消除磁动势谐波,从而能够利用磁阻转矩,进而可以降低永磁反电势,减小因反电势过高带来的影响。围绕该电机,本项目分析了该电机的绕组极槽配合及其磁动势谐波分布,针对该电机开展了优化设计和电机性能分析,包括健康状态、开路状态、短路状态和匝间短路状态。考虑到最严重的匝间短路故障,研究了该电机在不同运行工况下的匝间短路故障电磁和热特性。采用基于2D电磁模型和3D热模型的联合仿真来分析影响匝间短路温度的关键因素。研究表明电机匝间短路的温升受到短路线圈位置、短路线圈匝数、转速和负载四个因素影响。此外本项目研究了匝间短路故障的实时检测方法,提出了一种利用PWM电压谐波产生的纹波电流来检测绕组故障的检测方式,分析了在正常工况和绕组故障情况下由高频电压谐波所产生的合成电流谐波,故障相电流纹波显著增加。由于匝间短路绕组的去磁效应,导致故障相绕组阻抗降低,因此本项目还提出一种利用等效高频阻抗的新型转向故障检测技术。它是由高频电压和电流信号得出的,这些信号是通过带通滤波器处理相电压和电流而获得的。结果表明所提出的检测方法的性能优于常规的基于高频电流纹波的方法。.本项目研究电机系统电机性能和故障容错能力由于传统分布式绕组永磁磁阻电机,在航空航天、电动汽车等关键领域具有重要的应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
一种新型间日疟疫苗候选抗原:受感染红细胞表膜相关分子PvTRAg-26/ 29免疫原性及免疫效果研究
基于双绕组永磁容错电机的高可靠电驱动系统关键技术研究
磁力丝杠集成作动系统及其分数槽集中绕组的低谐波设计
电动汽车用绕组分离型同步磁阻永磁电机关键技术研究
永磁容错电机磁阻转矩的提升机理与容错控制