Porous silicon, with its huge surface ratio, unique pore property and optical-electrical feature, as well as its wide application in chemical sensing and biological detection, has become one of the highlighted interdisciplinary studies. No studies have reported electrochemical room temperature gas sensors based on nano-porous silicon materials in trace explosive gas. The project will be planned from the starting material preparation and analysis of sensor angle, has focused on the study of method of preparing new explosive gas-sensing materials and response mechanism of resistance-type gas sensor. In this design, the role of porous silicon with room temperature gas-sensing feature as support materials, and the nanocomposites with highly selective and sensitive to explosive’s gas molecules will be prepared through blending transition and precious metal into the semiconducting materials of nano-metallic oxide. Then, porous silicon is used as substrate to prepare the gas sensor, in order to improve the sensitivity of sensor, reduce the detection temperature and establish a novel resistance-type method of detecting explosive’s gas molecules, explore the gas-sensing mechanism of explosive’s gas molecules on composites nano-porous silicon of metallic oxide, study its structure-property-function rule. On this basis, a sensor array based on porous silicon sensing materials will be designed and fabricated, and data fusion technologies like LDA and BP neural networks are combined to conduct a quantitative detection of explosive gas in mixed gas at room temperature and expand the application scope of nano-porous silicon sensor in the field of gas detection.
多孔硅以其巨大的面表比、独特的孔洞性质和光电特性以及在化学传感、生物检测等方面的广泛应用,成为当今多学科交叉领域的研究热点之一,基于多孔硅的电学室温痕量爆炸物气体传感器尚无研究报道。本项目拟从材料制备和分析传感器角度出发,着重开展爆炸物气敏新材料制备方法和电阻式气体传感器响应机制的研究。设计以具有室温气敏特性的多孔硅材料作为衬底材料,通过对纳米金属氧化物半导体材料掺杂过渡金属和贵金属,探索出对爆炸物气体分子具有高选择性和灵敏度的纳米复合材料,制备成爆炸物气体传感器,提高传感器的灵敏度性和降低检测温度,建立一种电阻式检测爆炸物气体分子的新方法。探索爆炸物气体分子在金属氧化物复合纳米多孔硅上的气敏机理,研究其结构-性质-功能之间的关联规律。在此基础上构建传感器阵列,结合LDA和BP神经网络等数据融合技术实现室温下对混合气体中爆炸物气体的定量检测,拓展纳米多孔硅传感器在气体检测领域的应用范围。
爆炸物及臭氧等有毒有害物质危害人类健康与环境安全。传统的气敏传感器与集成电路工艺不兼容,工作温度较高。项目以多孔硅及多孔硅光子晶体为基底,复合氧化锌等金属半导体及贵金属纳米粒子,构建新型爆炸物气敏传感器等检测传感器有重要的现实意义。.项目设计制备了纳米异质结/多孔硅光子晶体复合SERS基底、进行了相关实验表征并且完成了相关检测物的检测,要包括:1.采用阳极电化学腐蚀法可控制备多孔硅基SERS基底对苦味酸进行检测,检测极限低至10 8mol/L,线性范围为10-4至10-7其相对标准偏差(RSD)约为8%。进一步,采用背面腐蚀多孔硅做基底,粗糙表面多孔硅SERS基底可以用于选择性地检测含有苦味酸的超痕量军用炸药,并提高灵敏度。苦味酸和探针分子R6G在拉曼光谱中的检测限分别为0.79nM和0.24fM。多孔硅或多孔硅光子晶体/氧化锌复合气敏材料构建传感器阵列实现对TNT的有效检测。LDA的测试结果可以发现,针对不同的测试气体,训练结果和测试结果基本在一起,其识别效果要优于PCA的识别效果。设计了多孔硅光子晶体SERS基底开展血清的高效检测。结果表明,采用高特异性Au-NPs/785 PSi-PhCs为SERS基底,结合SERS检测技术和多元统计算法,可以实现健康人、癌症患者和乳腺癌症患者三类血清SERS谱的分类。同时,课题组还对多壁碳纳米管气敏复合材料的气敏特性进行了探究。实验结果表明,梧桐纤维制备的空心多孔碳微管异质结能对氨气进行有效检测,柔性多壁碳纳米管/水性聚氨酯复合膜构建的传感器能对臭氧进行有效检测。研究结果表明,采用多孔硅作为传感器基底是构建新型传感器的一条有效途径。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
论大数据环境对情报学发展的影响
基于多模态信息特征融合的犯罪预测算法研究
高压工况对天然气滤芯性能影响的实验研究
锂离子电池新型纳米硅基复合多孔负极构效关系及界面特性研究
面向MEMS封装的多孔纳米支架基吸气剂的构效关系及能控吸气行为研究
新型多孔碳基复合相变储能材料的结构与热性能构效关系研究
N-硝基脲衍生物的构效关系及作用机理研究