The process for pyrolysis of aramatic flame-resistant fabric used in thermal protective clothing exposed to fire or high temperature radiation is complex. Heat transfe model,which is established according to heat and mass transfer theory of fabric pyrolysis, can be used in thermal design for thermal protective clothing.This has become a new cross research direction between engineering thermophysics and personal safety protection field. The project first imagingly describes space structural deformation and migration characters of thermal degradation components for inherent flame retartant clothing fabric by means of dynamic testing instrument. The mechanisms of clothing materials and calculate the parameters of pyrolysis kinetic based on dynamic rate law. Non-linear variation laws for fabric structure is then investigated experimentally by iconography during pyrolysis and the thermal shrinkage process of fabric is comprehensively characterized in terms of fractal theory. The fractal dimension variation law is used to state quantitatively variation of thermophysical paramter during fabric pyrolysis. Based on the above descriptions,an improved heat and mass transfer model for thermal protective clothing has been proposed in the project. The research results of the project can be applied to thermal ergonomics design for thermal protective clothing and provide reference for the prevention of fire burns, and to protect the safety of personnel.The methods in the project also help to establishthe theoretical basis for the characteristics and mechanism of thermal degradation components movement.
热防护服用芳香族阻燃织物受高温火灾辐射热作用会热分解收缩,其过程复杂,利用热解过程传热传质理论构建热防护服装传热模型,对热防护服装进行热设计,已形成工程热物理与个体防护领域新的交叉研究方向。本项目首先利用动态测试手段获得对芳香族阻燃衣物热解成分迁移特性及空间结构变形影像描述,借助热分析此类耐高温纤维材料热解机制,结合动态速率法则计算热解动力学反应参数;然后借助影像学实验研究织物热解过程非线性变化规律,从而可利用分形理论对织物热解收缩变形过程进行全面表征,运用热解分形维数变化的规律描述织物热物性参数非线性定量变化,以此构建热防护服装热质传递模型。本项目研究为热功能防护服装进行热工效优化设计,为预防火灾烧伤、保障人员安全提供参考,此研究也可为多孔介质材料的热解成分迁移特性及机理提供一定的理论基础。
热防护服用芳香族阻燃织物受高温火灾辐射热作用会热分解收缩,其过程复杂,利用热解过程传热传质理论构建热防护服装传热模型,对热防护服装进行热设计,已形成工程热物理与个体防护领域新的交叉研究方向。本项目利首先发展了织物受热热解及收缩过程的传热传质模型,然后进一步发展了模拟火场下下织物未发生热解传热模型。第一步:借助热分析此类耐高温纤维材料热解机制,结合动态速率法则计算热解动力学反应参数,借助影像扫描实验研究织物热解过程非线性变化规律,利用分形理论对织物热解收缩变形过程进行全面表征,运用热解分形维数变化的规律描述织物热物性参数非线性定量变化,研究热解前后织物热辐射参数变化规律,构建了热防护服装热解过程热质传递模型。第二步:构建“织物---空气层---铜片热流计”传热模型,进行热参数分析,最后利用模型和实验分析热解对织物热防护性能的影响。本项目研究为热功能防护服装进行热工效优化设计,为预防火灾烧伤、保障人员安全提供参考,此研究也可为多孔介质材料的热解成分迁移特性及机理提供一定的理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
氯盐环境下钢筋混凝土梁的黏结试验研究
基于分形维数和支持向量机的串联电弧故障诊断方法
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
多孔介质干燥过程热质传递的分形孔道网络模型及模拟
基于分形理论的耦合气固反应热质源的多孔介质热质传递研究
基于干燥理论的热功能织物火场下水分迁移机理及分形多尺度传输模型
纤维织物中的热湿传递数值模拟及织物结构优化