This project mainly studies the problems in graph theory: the integer flow problems due to four-color conjecture. In 1954, Tutte introduced the concept of nowhere-zero flows as a tool to attack the four-color conjecture. Moreover, Tutte proposed the well-known 3-flow conjecture: every 4-edge-connected graph admits a nowhere-zero 3-flow. With contraction, vertex-splitting, induction and contradiction method, we mainly study two aspects of problems around 3-flow conjecture: (1) study certain conditions for nowhere-zero 3-flows; (2) study nowhere-zero 3-flows in claw-free graphs with the structure: every edge lies in a 3-circuit. Problem (1) studies the existence of nowhere-zero 3-flows in graphs for the first time by using of the relationship between the connectivity and independent number. Problem (2) explores sufficient and necessary condition of nowhere-zero 3-flows in graphs which do not contain forbidden subgraph-claw.
本项目主要研究图论中的典型问题:源于四色猜想的整数流问题。1954年,Tutte 在研究四色问题时引入了整数流的概念,并提出了著名的3-流猜想:每个4-边连通图存在处处非零3-流。围绕此猜想,我们拟采用收缩法,点分裂法,归纳法以及反证法来研究以下两个方面的问题:(1)满足 Chvatal-Erdos 条件的图的处处非零3-流。(2)每条边都包含在3-圈中的无爪图的处处非零3-流。问题(1)第一次利用点连通度与独立点数之间的关系研究处处非零3-流的存在性问题(2)旨在探索不含禁用子图爪这一类图存在处处非零3-流的充分必要条件。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于多色集合理论的医院异常工作流处理建模
信息熵-保真度联合度量函数的单幅图像去雾方法
现代优化理论与应用
基于直觉模糊二元语义交互式群决策的技术创新项目选择
老年2型糖尿病合并胃轻瘫患者的肠道菌群分析
图中处处非零3-流及相关问题的研究
图的结构与处处非零3-流及Z3-连通性研究
图的连通性及有关图类的构造方法研究
图的组合结构及有关的极值问题