In order to improve the strength-toughness and tribocorrosion resistance of the protective coatings on the running parts in seawater environment, a gradient design idea based on the composition, structure size and elastoplastic property is proposed. The gradient nanostructured nitrides-carbides composite coatings with good self-lubricating properties are synthesized by using PIIID technology. This study focuses on the multi-scale deformation and strength-toughness, corrosion kinetics and wear-corrosion synergetic effect of the gradient composite coatings. The deformation characteristic, deformation characteristic difference, deformation characteristic interaction and transfer laws of the component layers are expounded. The corresponding bearing capacity evaluation mathematical model of the composite coating will be constructed. The structural design and life prediction method of the composite coating with high strength-toughness will be proposed. The influence of the chemical bond, agglomerate characteristic and the gradient nanostructure on the corrosion kinetics of the coating is revealed. Moreover, the relationship of the chemical bond, agglomerate characteristic, gradient nanostructure and corrosion kinetics is discussed. The micro-area corrosion and passivation mechanism between the coating and corrosive medium during the damage evolution is revealed. Based on the laws of the frictional behavior evolution, tribochemistry reaction and passivation layer depth distribution characteristic, the strong correlation of the regional mechanical state, environmental factor, material microstructure and tribocorrosion damage is established. The synergetic damage mechanism of wear and electrochemical corrosion will be explained in micro to nano scale. The research results will provide theoretical understanding for structure design, life evaluation and industrial application of the marine protective coating with high strength-toughness and excellent tribocorrosion resistance.
针对海水环境运转部件防护涂层“高强韧与抗磨蚀”关键技术需求,基于成分-结构尺度-弹塑性性能梯度设计理念,利用PIIID构筑梯度纳米氮化物/碳化物复合自润滑涂层。项目聚焦梯度组织多尺度变形与强韧化、微观层次腐蚀动力学本质及磨蚀协同损伤效应等核心问题,揭示各层次膜层变形特征、变形特征差异及变形特征相互作用与传递规律,构建承载能力评价数学物理模型,提出高强韧膜层结构设计与寿命预测方法;探讨稳态体系中涂层化学键组成、团聚特征和多尺度组织对腐蚀动力学过程的影响及其内在关系,阐明损伤演化过程中涂层微区电化学腐蚀与钝化机理;明晰动态磨蚀过程中损伤界面摩擦化学反应、钝化层纵深分布特征及其对涂层摩擦性能影响,建立微观失效区域力学状态、环境因素、材料组织特征与腐蚀损伤之间强关联性,从微纳米尺度解释磨损-电化学腐蚀协同损伤机理。为新型强韧化与抗磨蚀功能一体化海洋防护涂层结构设计、寿命评价与工程应用提供理论基础。
针对海洋装备运转部件表面防护涂层“高强韧与抗磨蚀”关键技术需求,基于材料-结构-功能梯度一体化涂层设计理念,利用等离子注入与沉积、磁控溅射和电弧辉光放电技术及其复合技术,可控制备多元/多尺度/多层次梯度纳米氮化物/碳化物复合涂层,全面解析涂层纳米微结构、强韧性能、摩擦磨损、动态承载失效行为、电化学腐蚀及动态磨损-电化学腐蚀协同损伤效应等核心内容。研究发现,通过自润滑耐磨层和高承载中间层复合结构设计,实现涂层的高强韧性和长服役寿命,梯度纳米TiN/TiSN/TiSiCN涂层摩擦过程中,TiSiCN顶层在摩擦表面形成润滑碳膜,有效降低摩擦剪切力,中间TiN/TiSiN层显著提升基体承载能力,降低摩擦过程中界面应力,抑制或延迟疲劳微裂纹萌生,保障涂层强界面结合、强阻隔与结构完整性,赋予涂层体系极佳抗疲劳磨损、抗腐蚀和抗磨蚀性能。提出通过等离子轰击能量梯度设计,精准调控离子沉积过程及生长模式,实现梯度纳米结构TiN与CrN素化涂层的可控制备,与常规涂层组织相比,梯度纳米结构组织具有高强韧性和强阻隔能力,能有效缓解摩擦过程中组织变形与断裂,抑制或延迟疲劳裂纹萌生,保障涂层结构完整性,具有更强抗磨损、耐腐蚀与抗磨蚀性能。提出基于梯度纳米多层结构与时效退火协同主导的高强韧涂层设计策略,通过时效退火过程热效应驱动CrN/WN纳米多层薄膜界面原子互扩散与固溶,通过固溶区界面尺度精准调控赋予涂层高强韧性能。提出贵金属修饰氮化物涂层设计策略,揭示Pt原子所主导CrN-Pt涂层的表面修饰、时效硬化与抗腐蚀微观机理。本项目利用先进微尺度表征与理论模拟分析,系统阐述多元/多尺度/多层次梯度纳米氮化物/碳化物复合涂层的微结构演化、强韧化及抗磨损腐蚀的微观机理,提出高强韧/抗磨蚀涂层结构设计与性能调控新方法,为长寿命海洋装备硬质防护涂层材料-结构一体化设计与性能优化提供理论指导和技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
合金化与复合协同强韧化原位自生MoSi2基纳米晶复合涂层的性能研究
碳化物衍生碳梯度涂层的水润滑摩擦学行为与机理研究
激光成形颗粒增强镍基高温合金多相复合与梯度界面协同强韧化机理
镁合金表面功能梯度薄膜界面结合机制与磨蚀协同损伤效应研究