In this project, a series of doped graphene-based porous materials with high porosity will be prepared in a controllable way via gas activation of various graphene-based aerogels containing heteroatoms. In situ reduction and cross-linking methods will be used to fabricate graphene-based aerogels containing heteroatoms by using graphene sheets as main building blocks. Various heteroatom-doped (nitrogen, phosphorus, and boron) graphene-based porous materials will be prepared by choosing different graphene-based aerogels. Pore structure parameters including specific surface area, pore volume, and pore size distribution will be adjusted in a controllable way by choosing different activation gases (steam or carbon dioxide) and changing activation temperature or activation time. The microscopic morphology, structure, chemical composition, and porous properties will be analyzed by various characterization methods, such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption measurements. We will explore their applications in supercapacitors, organic vapor adsorption, gas adsorption, and catalysis. By adjusting the types of heteroatom doping and pore structure parameters, the synergistic effect between the pore structure and functional components (heteroatom) will be analyzed in order to provide theoretical guidance in the development of the optimum graphene-based functional materials. We believe that the implementation of this project will not only enrich and develop graphene-based functional materials, but also provide an important theoretical and experimental basis for the industrial application of graphene.
本项目拟以石墨烯片层为基本构筑单元,采用原位还原或交联法制备含杂原子的石墨烯基气凝胶,然后将其进行简便的气体活化,可控制备一系列高孔隙率掺杂石墨烯基多孔材料。通过选用不同的石墨烯基气凝胶制备不同杂原子掺杂(氮、磷、硼)的石墨烯基多孔材料;通过选用不同活化气体(水蒸气或二氧化碳)、改变活化温度或时间可控调节所制备多孔材料的比表面积、孔容和孔径分布等孔隙结构参数。利用扫描电子显微镜、透射电子显微镜、X射线衍射仪、X射线光电子能谱仪、氮气吸脱附测试等表征手段研究其微观形貌、结构、化学性质以及多孔性质,并探索其在超级电容器、有机蒸汽吸附、气体吸附以及催化领域的应用。通过调节杂原子掺杂类型和孔隙结构参数,研究孔隙结构和功能组分(杂原子)的作用机制及其协同效应规律,为构建最优化的石墨烯基功能材料提供指导。本项目的实施可以丰富和发展石墨烯基功能材料,并为石墨烯的工业化应用提供重要的理论基础和实验依据。
以石墨烯片层、金属有机框架、碳纳米管、导电高分子等材料为前驱体,经过水热还原、高温碳化、气体活化或碳热刻蚀等方法,可控制备一系列高孔隙率功能基多孔材料。通过选用不同的前驱体制备不同杂原子掺杂(氮、磷、硫)的碳基多孔材料;通过选用不同活化气体(水蒸气或二氧化碳)、改变活化温度或时间可控调节所制备多孔材料的比表面积、孔容和孔径分布等孔隙结构参数。利用扫描电子显微镜、透射电子显微镜、X射线衍射仪、X射线光电子能谱仪、氮气吸脱附测试等表征手段研究其微观形貌、结构、化学性质以及多孔性质,并探索其在超级电容器、电池、气体吸附以及催化领域的应用。通过调节杂原子掺杂类型和孔隙结构参数,研究孔隙结构和功能组分(杂原子)的作用机制及其协同效应规律,为构建最优化的功能材料提供指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
气载放射性碘采样测量方法研究进展
基于FTA-BN模型的页岩气井口装置失效概率分析
基于二维材料的自旋-轨道矩研究进展
石墨烯基纳米多孔粒子复合材料的制备及其性能研究
新型高吸附容量高导热MOF-石墨烯复合多孔材料制备及性能
仿生多孔石墨烯基杂化电极材料的超分子自组装制备及其电容性能研究
石墨烯/铜基电接触材料的制备及其性能研究