Semiconductor photocatalytic reaction has been generally considered to be a way to convert solar energy into hydrogen energy by photocatalytic water splitting, which can effectively solve global environmental and energy problems. Photocatalytic hydrogen production over the traditional photocatalyst is a half reaction and contains an addition sacrificial reagent. On the basis of the visible-light-driven overall water splitting, the previous investigation work and results of our group, a new research project is proposed, which mainly focuses on the design and fabrication of graphene/Ag3PO4/metal sulfide (CdS, CdxZn1-xS solid solution, MoS2, WS2) Z-scheme composite photocatalysts by hydrothermal and/or solvothermal methods, in situ growth and chemical precipitation method, in order to improve the efficiency of visible-light-driven overall water splitting for hydrogen production without sacrificial reagent. The composition- morphology-performance intrinsic relationship, the synergistic effect and transfer and separation mechanism of photogenerated electrons and holes among graphene as a redox mediator, Ag3PO4 as an O2-evolving photocatalyst and metal sulfide as a H2-evolving photocatalyst will be carefully investigated and discussed. The process, mechanism and the synergistic effect of graphene-based Z-scheme photocatalytic systems for visible-light-driven overall water splitting will be revealed by this project. To improve the efficiency of visible-light-driven overall water splitting for hydrogen production, the intrinsic cause, synergistic mechanism and control principle of graphene-based Z-scheme overall water splitting will be carefully investigated and explained. This is of great significance in promoting the development of photocatalytic theory and increasing new knowledge of novel graphene-based Z-scheme photocatalytic systems.
半导体光催化分解水制氢技术可以将太阳能转化为洁净、环境友好的氢能,从根本上解决人类面临的能源短缺和环境污染问题。针对传统光催化制氢材料存在效率低、无可见光响应和消耗牺牲剂的缺陷,本项目拟以可见光全分解水制氢为出发点,结合我们前期的研究积累和工作基础,通过水(溶剂)热法、原位生长、化学沉淀等方法制备石墨烯/磷酸银/硫化物(硫化镉、锌镉硫固溶体、硫化钼、硫化钨)Z型复合光催化材料,实现无牺牲剂条件下可见光高效全分解水制氢。深入研究复合体系中电子传输介质石墨烯、产氧催化剂磷酸银和产氢催化剂金属硫化物的组成和微结构等特性与光催化全分解水制氢活性之间的内在关系、协同效应和光生载流子转移分离机理,阐明石墨烯基Z型复合光催化材料全分解水制氢过程的微观机理、协同作用和调控规律;以可见光高效全分解水制氢为研究目标,为新型石墨烯基Z型光催化体系的构建提供理论基础和科学依据。
项目执行期间通过水(溶剂)热法、原位生长、化学沉淀等方法制备合成了几类硫化物和石墨化氮化碳复合光催化材料,采用现代表征技术研究了上述复合光催化材料的组成、含量、微观织构、表面性质、光电流特性和光学性能等结构参数与基本物理化学性质。研究了组成和微结构与光催化制氢活性的相互关系,探究了微结构组分的界面接触状态、光生载流子转移分离的特性对其光催化制氢活性的作用机制,揭示了光生载流子迁移和分离规律。通过本项目的研究,为开发具有高活性复合光催化材料分解水制氢过程的微观机理、协同作用和调控规律提供新的思路和科学依据。多篇研究论文发表在多种国际刊物上,如:Energy & Environmental Science、ACS NANO、SMALL、APPLIED CATALYSIS B-ENVIRONMENTAL、CHINESE JOURNAL OF CATALYSIS等,发表SCI收录论文24篇,其中ESI高被引论文4篇,论文被SCI他引650余次。申请了4项国家发明专利。项目执行期间共毕业了1位博士研究生和4位硕士研究生。建立了较为广泛的国际学术交流与合作关系。项目期间项目负责人获得湖北省自然科学一等奖1项、霍英东青年教师奖、同时入选科睿唯安2017-2020年化学学科-全球高被引作者,2016-2019年连续四年入选Elsevier化学工程学科中国高被引学者榜单。
{{i.achievement_title}}
数据更新时间:2023-05-31
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
2009 -2017年太湖湖泛发生特征及其影响因素
黑色素瘤缺乏因子2基因rs2276405和rs2793845单核苷酸多态性与1型糖尿病的关联研究
近红外光响应液晶弹性体
相关系数SVD增强随机共振的单向阀故障诊断
新型高效石墨烯基全固态Z型光催化体系的构建及其分解水产氢研究
石墨烯构建Z型载流子转移通道的复合型光催化制氢材料
树叶分级构造Z型光催化材料构筑及可见光全分解水特性研究
多酸基量子点敏化可见光催化分解水制氢体系的构筑及性能研究