Sparsity constrained optimization has been applied widely in signal and image processing, machine learning, pattern recognition and computer vision, and so on. In this project, we consider the sparsity optimization with abstract constraint, and conclude the theoretical results including M-stationary and S-stationary (strong stationary) by utilizing the generalized normal cones; first- and second-order optimality conditions by way of generalized differential; stationary and optimality conditions from the view of disjunctive optimization.
稀疏约束优化问题被广泛应用于信号回收、图像处理、机器学习、图像识别、计算机显像等诸多领域。本项目以带有抽象约束的稀疏优化问题为研究对象,主要内容包括:利用广义法锥刻画M-稳定性和S-稳定性(强稳定性);利用广义微分计算一阶、二阶广义导数,刻画最优性条件;借鉴分离优化等方法研究稳定性,刻画最优性条件。
{{i.achievement_title}}
数据更新时间:2023-05-31
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究
地震作用下岩羊村滑坡稳定性与失稳机制研究
采用黏弹性人工边界时显式算法稳定性条件
基于概率-区间混合模型的汽车乘员约束系统可靠性优化设计
稀疏约束优化问题的二阶最优性条件及稳定性研究
稀疏矩阵锥约束优化问题的最优化理论与数值算法
均衡约束优化问题的二阶最优性条件和稳定性分析
关于约束稀疏优化问题的理论、算法及应用研究