Optical switch based on long period grating offers a potential application platform for optical communication, however, optical switch based on long period grating inscribed in commercial single mode fiber exhibits low effectiveness and weak tunability due to large cross-sectional area of the fiber and low nonlinear coefficient of silica. A high performance optical switch based on the long period grating in liquid cladding micro/nanofibers is developed in this project, which employs the advantages of long period grating, micro/nanofiber and femtosecond laser micromachining technique. The detailed contents includes: firstly, the establishment of relation between the structure of the micro/nanofibers, the material of the liquid cladding and the optical property of the long period gratings in the liquid cladding micro/nanofibers; then, the theoretical mathematical model for the optical switching under different excitation and the corresponding switching property; thirdly, the fabrication techniques of long period gratings in the liquid cladding micro/nanofibers; finally, the setup of experimental system to measure the performance of optical switch. This project focus on the crucial factors in improving the effectiveness and the tunablility of the optical switching to research on the novel tunability mechanism and technology of optical switching based on the micro/nanofiber, which will demonstrate valuable theoretical importance and potential applications to the photonic switching in high-speed optical communication system and integrated optics fields.
长周期光纤光栅光开关在光通信领域有着巨大的应用潜力,然而基于普通单模光纤长周期光栅的光开关受限于较大的光纤截面尺寸以及石英材料较低的非线性系数,其开关效率较低、可调谐性能不足。本项目拟将长周期光栅、微纳光纤与飞秒激光微加工技术三者相结合,研制基于液体包层微纳光纤长周期光栅的高性能光开关。其研究内容包括:微纳光纤结构参数、液体包层材料对长周期光栅光学特性的影响机理;基于液体包层微纳光纤长周期光栅的光开关模型的建立及性能研究;液体包层微纳光纤长周期光栅的制备技术研究;设计并搭建光开关性能测试平台。该研究针对如何提高光纤光开关的效率及可调谐性等关键问题,研究新的微纳光纤光开关调控机理与关键技术,最终研制出一种高性能的微纳光纤光开关,本项目的研究对高速光通信系统和集成光学等领域中的光交换具有重要的理论价值和应用潜力。
长周期光纤光栅光开关在光通信领域有着巨大的应用潜力,然而基于普通单模光纤长周期光栅的光开关受限于较大的光纤截面尺寸以及石英材料较低的非线性系数,其开关效率较低、可调谐性能不足。本项目将长周期光栅、微纳光纤与飞秒激光微加工技术三者相结合,研制了基于液体包层微纳光纤长周期光栅的高性能光开关。所取得的成果主要由:(1)通过对三层波导结构的微纳光纤进行有限元仿真,研究了微纳光纤的结构参数、液体包层材料对长周期光栅光学特性的影响机理;(2)基于对不同液体包层微纳光纤长周期光栅的模式分析,研究了其波长可调谐性能;(3)通过对二氧化碳激光器及飞秒激光器不同参数的摸索,利用不同的原理,分别制备了液体包层微纳光纤长周期光栅;(4)设计并搭建光开关性能测试平台,研究了热光开关,全光开关的性能。本项目的研究对高速光通信系统和集成光学等领域中的光交换具有重要的理论价值和应用潜力。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于限流级差配合的城市配电网高选择性继电保护方案
长链基因间非编码RNA 00681竞争性结合miR-16促进黑素瘤细胞侵袭和迁移
强震过程滑带超间隙水压力效应研究:大光包滑坡启动机制
土体约束对海底管道整体屈曲的影响机理研究
近红外光响应液晶弹性体
基于微纳光纤布拉格光栅的光开关研究
结构型微纳光纤长周期光栅免疫传感器机理与实现研究
基于光栅光阀(GLV)的超高速光开关
基于有源光纤光栅非线性光开关研究