Passenger flow congestion in peak hours of urban rail transit is becoming increasingly severe, which affects the level of service and operational safety seriously. This project wants to solve or reduce the passenger flow congestion by using the time-dependent pricing strategy, aims to overcome the drawback of the current passive inflow control management and improve by a more flexible and active demand management measure. Firstly, we study the market segmentation method from the perspective of consumer behavior by combining the data of travel survey and automatic fare collection records, then analyzes the travel characteristics of grouped passengers, determines the fare sensitivity, and explores the time-dependent law of demand elasticity; and builds the continuous departure time selection model. Secondly, we study the adaptability of differential pricing model and the requirement for time span setting, and then construct the time-dependent pricing model. Finally, the method of network passenger flow simulation is used to carry out the empirical research, verifying, evaluating and optimizing the theory and method of the proposed theory and methods in view of multi-dimensional evaluation indexes. At present, the differential pricing strategy has become an important measure to alleviate peak congestion in foreign urban rail transit, however it is still in the exploratory stage in China, which needs to carry out in-depth study of the relevant basic theory. The study will expand the theory of transport organization for urban rail transit, and enhances the level of congestion management.
城市轨道交通高峰客流拥挤日益严峻,严重影响运输服务水平和运营安全。本课题拟以分时差别定价策略为切入点,研究以疏解高峰客流拥挤为核心目标的差别定价编制理论,旨在克服当前以限流为主要手段的被动式管理不足,实现需求由被动控制向柔性主动管理过渡。首先,结合出行调查及自动售检票数据挖掘技术,从消费行为视角研究客运市场细分方法,挖掘群体出行特征、测定票价敏感度、探求需求弹性演变趋势,进而针对不同类型乘客构建出发时间连续型选择模型;其次,研究差别定价模式适应性条件及定价时段设置要求,以此为基础构建分时差别定价优化模型;最后,运用网络客流仿真方法开展实证研究,构建多维度拥挤疏解效果评估指标,验证、评估及优化所构建理论与方法。目前,差别定价策略已成为国外城市轨道交通缓解高峰拥挤的重要措施,国内尚处于探索阶段,迫切需要对相关基础理论展开深入研究。该研究有助于扩充轨道交通客运组织理论,提升客流拥挤管控水平。
本项目针对大城市轨道交通日益严峻的高峰拥挤问题,以分时差异定价为着力点,建立以疏解高峰客流拥挤为核心目标的差别定价编制理论。一、充分利用自动售检票数据全样本、持续、高精度特点,基于乘客消费行为构建客运市场细分模型,提高了乘客分类的客观性和准确性;二、以北京地铁峰前折扣票价政策为背景,结合乘客出行调查,精细化测定不同类型乘客应对票价变化后的行为反应,从而为票价政策的制定提供关键参数;三、研究了不同定价模式、定价结构、定价策略对轨道交通高峰拥挤缓解的适应性,构建了差异定价编制模型,以北京地铁为例实证分析,结果显示:限制当前票价政策效果的关键在于票价变动时段设置的不合理,在不提高票价浮动比例的前提下通过优化时段能够大幅提高拥挤疏解效果;四、搭建网络客流仿真平台,对优化后的票价策略实施效果进行验证。另外,针对当前实践中应对高峰拥挤常采用的限流策略也进行了拓展研究,构建大规模轨道网协同限流方案编制算法、偶发拥挤条件下的闭环客流控制方法、基于限流指数的限流方案效果评估方法,从差异定价、限流两方面来系统化解决轨道交通高峰拥挤问题,为运营管理提供全面的理论与方法支撑。本项目研究成果能够有效地支撑运营企业制定科学合理的票价策略、限流组织策略,提升我国轨道交通运营管理水平。
{{i.achievement_title}}
数据更新时间:2023-05-31
城市轨道交通车站火灾情况下客流疏散能力评价
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
动物响应亚磁场的生化和分子机制
多源数据驱动CNN-GRU模型的公交客流量分类预测
人工智能技术在矿工不安全行为识别中的融合应用
基于多源大数据与个体活动的城市轨道交通客流预测理论研究
公交主导型大城市综合交通枢纽客流疏解优化
闭环供应链中差别定价问题研究
缓解城市高峰时段交通拥挤的社会与个人双赢博弈机制设计研究