Hierarchical structured zeolites is already known as one of most important catalysts in bulky molecular catalysis, have been a hot research topic.Spontaneous self-assembly without templating provides a simple and low-cost method for large-scale preparation of ensembles of nano-unites with hierarchical micro/nano structure.However, improvement of stability of self-assembly materials has been extremely challenging. Enhancement of the interface interaction of nanocrystals is therefore considered as key factor of solving this bottle-neck problem in practical application of self-assembly materials. Aims of our proposal projects are as the following: Firstly, new spontaneous self-assembly and relevant nanotechnological synthetic methodology will be developed for the preparation of hierarchical structured zeolites constructed by nanocrystals; Next, for extension of synthetic methodology, the exploration of mechanism of new spontaneous self-assembly methods and interface interaction are more desired for the synthesis and application of novel hierarchical structured architectures. Finally, for extension of applications, the investigation of stability is still required for further improvement of catalytic activity in bulky molecular cracking.
微纳分级结构纳米分子筛材料是国际大分子催化领域研究的热点。"无模板"自发自组装技术,以纳米材料为结构单元,不仅能有效地构筑微/纳米尺度上的分级结构,而且合成更简便、成本效率更合算,为材料规模化制备提供了基础。但是,自组装材料的低稳定性是制约其应用的瓶颈问题。如何增强纳米微晶的界面相互作用是提高稳定性的关键。本项目将研究:1,纳米分子筛微纳米分级结构的自发自组装合成技术;2,微纳米分级结构的自组装机理和结构单元纳米微晶相互作用机制;3,微纳分级结构纳米分子筛的稳定性及大分子催化裂化应用。
微纳分级结构纳米分子筛材料是国际大分子催化研究的热点。本项目开发的绿色自发自组装技术,以纳米材料为单元,不仅能有效地构筑微/纳米尺度上的分级结构,而且合成技术更简便和成本效率更合算,为规模化制备提供了基础。但是,自组装材料的低稳定性是制约其应用的瓶颈问题。如何增强微晶的界面相互作用是提高稳定性的关键。本项目主要研究了以下三个方面的内容:1,纳米分子筛微纳米分级结构的自发自组装合成技术;2,微纳米分级结构的自组装机理和结构单元纳米微晶相互作用机制;3,微纳分级结构纳米分子筛的稳定性及大分子催化裂化应用。依托项目共发表SCI论文21篇,其中影响因子10以上的4篇,影响因子5-10的8篇,影响因子3-5的6篇,4次被选为 “封面论文”。授权中国国家发明专利7项,在申请专利10项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
基于改进LinkNet的寒旱区遥感图像河流识别方法
萃取过程中微观到宏观的多尺度超分子组装 --离子液体的特异性功能
氧化应激与自噬
血管内皮细胞线粒体动力学相关功能与心血管疾病关系的研究进展
室温ECAP制备亚微晶/纳米晶纯钛材研究
分级结构的纳米晶磷酸铁锂微球的脱嵌锂机制及其比较研究
纳米微晶软磁材料及薄膜的研究
炸药纳米晶界面组装机制及冲击起爆性能研究