The motions of animals reveal strong mobility and high flexibility. Thus, the cyborg animals which are made on biological platforms have stronger mobility and better terrain adaptability than artificial robots. Locusts, talented natural jumpers, are widely distributed in China. Taking locust as the biological platform and controlling its jump mechanism through micro-electronic device, we can develop a natural animal into jumping cyborg locust, or insect-machine hybrid. At present, the research of cyborg robot is mostly focused on walking and flight control, while the jumping cyborg robot remains undeveloped and even the control method for inducing locust jumping has not yet been established. Therefore, this project will focus on the research of jumping cyborg locust. At the beginning, the jumping gait of locusts should be well established, and functional electrical stimulation method should be developed based on the functions and characteristics of jumping muscles. Then we will try to control the jumping behavior of locusts by stimulating the motor nerves or muscle tissues. Moreover, an optimized electrical stimulation protocol should be built to induced controllable graded jumping force as a function of the input signal. In compliance with the protocol, a control model, as well as its program, will be established. Finally, the jumping cyborg locust will be developed to achieve flexible jumping and quick moving.
生物的运动具有机动性强、灵活性高的特点,基于生物体开发的生物机器人可以有更强于人工机器人的运动能力与地形适应能力。拥有出色跳跃能力的蝗虫在我国分布广泛,以蝗虫为生物平台,通过微型电子设备控制蝗虫跳跃,可以开发出“半机械半蝗虫”的跳跃式生物机器人。目前,生物机器人研究多集中于爬行与飞行控制,而跳跃式生物机器人仍没有被开发,同时,针对蝗虫跳跃机构的控制方法也尚未建立。因此,本项目将针对蝗虫跳跃生物机器人展开研究。首先要建立蝗虫的跳跃步态,并结合跳跃中的肌肉调控机理开发功能性电刺激方法,通过刺激蝗虫的运动神经或肌肉组织,控制蝗虫的跳跃机构工作,进而通过优化电刺激协议,有梯度地控制蝗虫跳跃力度,并据此建立控制模型,开发控制软件,最终实现蝗虫跳跃生物机器人的灵活跳跃能力与快速移动能力。
拥有出色跳跃能力的蝗虫在我国分布广泛,以蝗虫为生物平台,通过微型电子设备控制蝗虫跳跃,本项目开发了“半机械半蝗虫”的跳跃式生物机器人。先前的生物机器人研究多集中于爬行与飞行控制,而跳跃式生物机器人没有开发先例,此外,针对蝗虫跳跃机构的控制方法也尚未建立。因此,本项目首先提出了基于蝗虫神经与肌肉电刺激的生物跳跃机器人设计思路,建立了蝗虫跳跃步态及姿调整模型,结合跳跃中的肌肉调控机理开发了功能性电刺激方法,并通过刺激蝗虫的运动神经或肌肉组织,实现了有梯度地控制蝗虫跳跃力度。研究中进一步解释了蝗虫转向跳跃和差动跳跃的运动机制,开发了能够实现准确转向跳跃的电刺激控制协议,并设计了配套的生物电子控制系统,研制了具有灵活跳跃能力与快速移动能力的生物机器人。本项目研究成果在灾后探测、事故勘察、管道检修等场景下具有重要的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
仿蝗虫跳跃机器人空中姿态自调整技术及着陆稳定性研究
基于蝗虫杠杆—弹射跳跃机理的仿生微跳跃机构研究
仿蝗虫柔性跳跃机器人基础技术研究
仿蝗虫的刚柔耦合跳跃-滑翔机器人机构设计与性能研究