Advanced electrochemical oxidation processes (AEOPs) have been applied to toxic and biorefractory organic wastewater treatment, but existing technical problems such as lack of sound electrodes, poor processes and reactors. To solve these problems and achieve a cost-effective treatment objective, in the present work, three aspects of innovations on novel electrode fabrication, electrochemical process and reactor development are carried out, using typical organic pollutants from chemical industrial wastewater as target pollutants. It will develop novel doped PbO2/nanotube TiO2/Ti anode, efficient cathode for hydrogen peroxide formation and thus the induced electro-Fenton reaction, and supported metal oxide catalysts for construction an efficient electrochemical heterogeneous catalysis system. This work will study the fabrication process of this new kind of nanotube-based electrode and its modification method doped by metal and/or nonmetal, gaining insight into the dope mechanism and key parameters for fabrication. The cathode preparation for efficient hydrogen peroxide formation and electro-Fenton oxidation as well as the principles and conditions for coupled electrodes will be investigated. Several kinds of supported metal oxide catalysts will be prepared for construction of electrochemical heterogeneous catalysis system, and the key parameters and action mechanism will be disclosed. The degradation behavior and mechanism of some typical biorefractory organic pollutants will be studied and key parameters will be revealed. It will also study the feasibility and stability of this new system for real chemical industrial wastewater treatment, evaluating the possibility for biodegradability enhancement. This work will help to develop a new electrode fabrication method and promote the application of electrochemical heterogeneous catalysis system for biorefractory wastewater treatment, and thus it is of great significance for academic research and promising for application.
以化工废水中广泛存在的典型有机污染物为研究对象,围绕高效低耗稳定处理的目标,从创新电极、工艺和反应器三方面进行深入研究,研制以TiO2纳米管阵列为基体的掺杂型PbO2阳极、高效产过氧化氢阴极并触发电芬顿反应达到阴阳两极耦合作用,在负载型金属氧化物催化剂研制和筛选基础上,构建新型高效电化学多相催化氧化体系。探索新型纳米管基体电极可控制备方法和金属、非金属掺杂技术,阐明掺杂机制,掌握新型电极形成机制和制备关键;研究阴极高效产过氧化氢并引发电芬顿反应的条件,探索双极耦合机制和条件;研制多种负载型金属氧化物催化剂,揭示电化学多相催化氧化关键因素,阐明高效作用机制。研究典型有机污染物在新型体系中的降解行为,阐明降解机理,并探索应用于实际化工废水处理适应性、稳定性和可生化性改善情况。这对于完善新型电极制备技术和理论,促进电化学多相催化体系在难降解有机废水治理中的应用,具有重要的学术研究价值和应用前景。
针对电化学高级氧化技术处理有毒难降解有机废水这一重大环境需求存在的电极性能不够完善、处理工艺和反应器欠高效等问题,围绕低耗高效稳定处理的核心目标,以化工、印染等废水中广泛存在的典型有机污染物为研究对象,研制以TiO2纳米管阵列为基体的掺杂型PbO2阳极,高效产过氧化氢阴极并高效引发电芬顿反应,从而达到阴阳两极耦合作用,在负载型金属氧化物催化剂研制和筛选基础上,构建新型高效电化学多相催化氧化体系。发展了基于TiO2纳米管阵列的新型纳米PbO2电极可控制备方法和过渡金属掺杂技术,阐明Fe等元素掺杂机制,掌握新型电极形成机制和制备关键;发明了石墨毡化学、电化学改性简单方法和复合电极制备工艺,显著提升阴极产过氧化氢性能。构建并优化耦合阳极氧化、阴极电芬顿的过滤式电化学体系,阐明耦合机制和条件。研制Fe、Cu、Co、Ce等多种负载型金属氧化物催化剂,揭示电化学多相催化氧化关键因素,阐明高效作用机制。研究典型有机污染物在新型体系中的降解行为,阐明降解机理,并探索应用于实际有机废水处理适应性和稳定性。本项目的研究对于完善新型电极制备技术和理论,促进电化学高级氧化技术的发展及其在有毒难降解有机废水治理中的应用,具有重要的学术研究价值和应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
声光协同多相催化降解水中有机污染物作用机理研究
有毒有机污染物高效光催化降解及其关键机理研究
基于碳纳米管内孔(壁)的电化学特性高效降解有机污染物的过程和机理
紫外和可见光光催化耦合体系的构建及其降解有机污染物