Reelin plays an instrumental role in regulating neuronal migration. Aberrant Reelin signaling is associated with multiple psychiatric disorders including autism and schizophrenia. The intracellular adaptor protein Disabled-1 (Dab1) is key to Reelin signaling. Reelin stimulation induces Dab1 tyrosine phosphorylation, which then recruits and activates downstream cascades. To date, worldwide studies have primarily focused on the role of a single Dab1 protein in neuronal migration; yet, mechanisms underlying the orchestration of neuronal migration remain unclear. Contrary to the classic view, we have previously discovered that Dab1 is alternatively spliced during brain development, generating up to 11 Dab1 isoforms. Further studies have revealed that alternative splicing precisely controls the number and phosphorylation status of tyrosine sites within Dab1 isoforms in a spatio-temporal manner. Our data suggest that multiple Dab1 isoforms co-ordinate the downstream signaling and dynamically orchestrate neuronal migration. In this grant proposal, we plan to further determine the role of Dab1 alternative splicing in neuronal migration in vivo, using antisense oligonucleotides (ASOs) to specifically block the alternative splicing of Dab1, in utero electroporation to ectopically express Dab1 isoforms, in combination with real-time fluorescent microscopy imaging and biochemical methods. Investigating the cell migration from a splicing perspective not only provides new insights into the mechanisms underlying neuronal migration, but also sheds lights in understanding the pathogenesis of psychiatric diseases in which Reelin-Dab1 signaling is implicated.
Reelin是调节神经元迁移的关键分子,异常与自闭症、抑郁症等密切相关。连接蛋白Dab1是Reelin信号通路的核心,经Reelin刺激后可发生酪氨酸磷酸化,并激活下游效应分子。目前研究仅局限于单个Dab1分子,然而,Dab1协调细胞迁移的机制至今未明。我们的前期研究发现Dab1受剪接调控能产生多达11种剪接体,颠覆了传统的单一Dab1论。进一步研究表明可变性剪接能在时空上精确控制Dab1中酪氨酸位点的数目和磷酸化状态,提示多个Dab1剪接体能共同参与Reelin信号通路并协调神经元的迁移。本项目在前期研究基础上,采用胚胎电转染的方法,在体引入ASOs阻断内源剪接,表达外源剪接体,结合实时荧光显微成像和生化手段,深入研究Dab1剪接在调控神经元迁移中的作用。本项目首次从剪接角度研究细胞迁移,将为阐明神经元迁移的分子机制提供新方向,为揭示Reelin相关精神疾病的发病机制提供新的理论依据。
Reelin-Dab1信号通路是调节神经元迁移的关键通路,其活性异常与自闭症、精神分裂症等疾病密切相关。Reelin刺激可诱导神经元内的连接蛋白Dab1发生酪氨酸磷酸化,磷酸化的Dab1招募并激活下游效应分子,介导神经元在脑内的迁移和准确定位。既往研究多局限于单个Dab1分子,而单个Dab1分子如何在发育脑内时空上协调细胞迁移的机制一直不明。.项目前期研究发现mRNA剪接能使单个Dab1基因产生多达11种剪接体,使不同Dab1变异体中含有不同数目的酪氨酸位点。本项目通过原位杂交、子宫内胚胎电转、荧光显微成像和生化手段等分析了不同的Dab1变异体对神经元迁移的影响。研究发现,在大规模神经元迁移时期(E14.5),Dab1外显子7/8与9bc在大脑皮层中的中间带区(IZ)存在互斥性剪接。外源性引入含有或缺失7/8,9bc外显子的Dab1变异体至E14.5小鼠胚胎脑内能导致神经元在脑内截然不同的迁移和分布,且主要通过改变神经元主要突起的长度和极性来影响迁移。免疫荧光分析发现不同变异体在脑内存在差异性磷酸化。值得注意的是,Dab1的磷酸化主要发生于多极神经元簇集区(MAZ)的中间带IZ,而非皮层板(CP),提示剪接可能主要在该区域调节Dab1功能。进一步研究发现Dab1 9bc变异体虽保留所有酪氨酸位点,却不能在体内发生磷酸化。将Dab1变异体引入Dab1缺失的神经元后发现经典型Dab1能通过促进多极神经元向双极神经元的转换 (MBT)而补救神经元迁移缺陷,而Dab1 9bc不仅无法拯救迁移缺陷,反而更加重了神经元迁移阻滞,提示9bc可能发挥了显性负性调控作用。基于以上研究基础,我们提出,在大脑发育过程中的神经元迁移分别受转录后与翻译后水平的双重调控:RNA剪接调控IZ/MAZ区域的Dab1基因产出,并使不同Dab1变异体的磷酸化修饰发生差异,通过调控不同神经元的多极向双极转换(MBT),从而在时空上实现不同神经元的准确迁移和定位。项目研究成果首次从转录后水平系统研究Reeling-Dab1信号通路在体内的作用,为Reelin-Dab1这一关键信号通路调控神经元迁移提供了新的视角,也为该通路相关的自闭症、精神分裂症等疾病的分子发病机制提供新的线索和理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
IRE1-RACK1 axis orchestrates ER stress preconditioning-elicited cytoprotection from ischemia/reperfusion injury in liver
DISC1通过AKT-mTOR、Reelin通路调控癫痫后齿状回新生神经元迁移的机制研究
神经元迁移胞内信号转导通路的研究
Reelin对B细胞在骨髓内发育和迁移的影响研究
Reelin-Dab1-Rap1信号通路在MTLE形成中的作用及表观遗传学调控机制研究