For the healthy development of bioenergy industry, it is necessary to use all the components of biomass through higher-value technique, including the effective reuse of biomass char. Biomass char is composed primarily of carbon and silica, and could be a potential feedstock of activated carbon (AC) and nano-SiO2. The AC insulation feature hinders strongly the heat transfer on the AC surface during the thermal regeneration process, and probably results in hot spots and auto-ignition. However, few scientists pay attention to the promotion and controlling of AC thermal conductivity. Our group proposed creatively a solution of thermal conductivity promotion by in-situ synthetizing nano heat conductor. Focusing on the key scientific problem of the controlling mechanism of AC thermal conductivity, the research contents are as follows: (1) the preparation of thermally conductive activated carbon from biomass char with high silica content by microwave-assisted steam activation; (2) the controlling mechanism of thermal conductivity promotion by in-situ synthetizing nano-Al2O3; and (3) the graphitization controlling of AC surface and its effect on the AC thermal conductivity. This project not only select the inert Al2O3 as heat conductor, but also nitride partly the synthetized Al2O3 to AlN with higher thermal conductivity using the high temperature of steam activation, and control the graphitization of activated carbon under the high temperature conditions of activation and nitriding, so the comprehensive controlling of AC thermal conductivity could be realized. The results will also be meaningful to the preparation and application research of common activated carbon (coke).
生物质能产业的良性发展,需注重生物质全组分的高值化,包括充分利用副产物生物质焦。生物质焦的主要成分为炭和硅,是活性炭及纳米SiO2的潜在原料。活性炭的绝热属性不利于热法再生过程的热量传递,易引起局部高温而自燃,但活性炭导热性的增强与调控未受广泛重视。本课题创新性地提出了原位同步合成纳米导热体增强活性炭导热性的新思路,围绕导热性调控机理这一关键科学问题,开展如下研究:(1)微波辐照髙硅生物质焦制备导热活性炭的水蒸汽活化方法;(2)原位同步合成纳米Al2O3增强活性炭导热性的调控机理;(3)炭层的石墨化调控及其对活性炭导热性的影响规律。本课题不仅选择了反应惰性的Al2O3为导热体,还创新性地结合水蒸汽活化的高温特征部分氮化Al2O3为导热更优良的AlN,充分利用活化、氮化的高温条件调控活性炭的石墨化度,以此实现活性炭导热性的全面调控。课题对其他碳源活性炭(焦)的制备及应用机理研究具有重要意义。
生物质能产业的良性发展,需注重生物质全组分的高值化,包括充分利用副产物生物质焦。生物质焦的主要成分为炭和硅,是活性炭及纳米SiO2的潜在原料。活性炭的绝热属性不利于热法再生过程的热量传递,易引起局部高温而自燃,但活性炭导热性的增强与调控未受广泛重视。本课题建立了系列除杂预处理、活化方法,提取纯化生物质焦(秸秆灰渣)中的秸秆炭,并活化成秸秆活性炭;创新性地通过溶胶凝胶法混合硝酸铝和秸秆活性炭,通过微波高温氮化原位生成导热体AlN,制得导热活性炭。技术路线不存在问题,实验取得成功,但也有失败之处:(1) 秸秆灰渣杂质较多,要制备导热活性炭,必须经过除钾、除磷、除硅等除杂预处理(在除杂方面获得了较多创新成果);(2)氮化反应条件苛刻(微波加热、1550℃),课题前期设计的大型微波实验炉只能以固定床反应的形式使用,气固传质不佳;(3) 制得的导热活性炭,导热系数已接近于分析纯氮化铝粉末(粒径5um),但在应用上效果可能不会明显。因此,实验研究的技术方案有所改进,比如:改用KOH活化、不再深度开展“石墨化”分析、更正了导热系数的测定。..本课题对相关领域有重要理论与应用意义,获得诸多创新性研究成果。(1)炉排炉秸秆直燃电厂飞灰的浸出液中,钾离子浓度达到17.21 g/L,秸秆灰渣优于其他劣质钾源;(2)秸秆灰渣经过除钾除磷后,使用NaOH溶液能溶出74%的SiO2,获得硅酸钠溶液;(3)以除杂过程获得的硅酸钠溶液为原料,通过溶胶-凝胶、常压干燥法制备纳米硅气凝胶,性能达到国际领先水平(比表面积最大900 m2/g、孔容5.7 mL/g);(4)建立了生物质焦(秸秆灰渣)制备导热活性炭的方法,揭示了导热性调控机理。在25℃的温度条件下,秸秆活性炭(粒径15um)的导热系数为0.25 W/(m·K),导热活性炭的导热系数为0.54 W/(m·K),提高了1倍。本课题成功制得了导热活性炭,导热系数接近于分析纯氮化铝粉末(粒径5um)。氮化铝是导热性最高的非金属材料,分析纯氮化铝粉末(粒径5um)的导热系数也才0.57 W/(m·K)。..本课题发表文章6篇,后续还会有2篇SCI文章发表,培养研究生5名。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
低膨胀高导热镁合金的制备及其性能调控机理
高导热石墨膜制备及导热机理研究
高导热高性能纤维环氧复合材料的制备及导热机理研究
兼顾良好导热性能和抗辐照性能的钨/石墨烯多层膜结构材料的制备及其机理研究