Conventional biomass gasification has high tar content and low content of H2 which hold the application of biomass energy back, how to improve the content of H2 and eliminate carbon deposit on the cracking and reforming catalyst is the key in the process of hydrogen production from biomass. This project will focus on the core scientific problem about the interaction mechanism and regulation rules between the catalyst solid surface characteristics and environment , the external field. A new method of interface structure regulation through catalyst is put forward, which aims to make tar concomitantly produced with biomass gasification such as large molecules polycyclic aromatic hydrocarbon precisely activated and in situ cracked into small molecules fuel gas, at the same time, reduce the carbon deposit on the cracking and reforming catalyst, and keep the activity of catalyst, the CO again take the transform reforming reaction with steam to generate CO2, the role of CO2 capture agent overcomes the limitation of chemical equilibrium in reforming reaction, which further generate hydrogen, and improve the content of hydrogen; the project will be involved in the new ways for the catalytic activation mechanisms of carbon bonds, the catalyst interface structure regulation to realize the tar efficiently converted, and study its regulatory mechanism and implementation method, reveal the in situ reaction mechanism of carbon-based tar catalytic conversion and CO2 capture to promote critical path forward to hydrogen production from the biomass conversion, provide theoretical foundation and scientific basis for its industrial application.
常规的生物质气化制氢焦油含量高、H2含量低,严重阻碍了其应用,如何提高H2含量以及消除焦油转化催化剂上的积炭是生物质制氢过程中的关键。本课题将针对催化剂固体表面特性与环境和外场的相互作用机制及调控规律的核心科学问题,通过催化剂表界面结构调控的新方法,旨在使生物质气化过程中伴随产生的焦油等稠环大分子的精准活化原位催化裂解为小分子可燃气体的同时,降低原位转化催化剂上的积炭,保持催化剂活性,产生的CO再与水蒸汽变换重整生成CO2,CO2通过捕集剂的固化作用克服变换重整反应中化学平衡的限制,进一步向生成氢的方向移动,提高氢的含量;课题将以涉碳化学键的催化活化新机制、新途径为研究重点,通过催化剂表界面结构调控以实现焦油载能分子的高效转化,研究其调控机制与实现方法,揭示焦油原位催化转化与CO2捕集促进生物质转化制氢的的反应机理与关键路径,为其工业应用提供理论基础与科学依据。
常规的生物质气化制氢碳基焦油含量高、H2含量低,严重阻碍了其应用,如何提高H2含量以及消除焦油转化催化剂上的积炭是生物质制氢过程中的关键。本课题针对催化剂固体表面特性与环境和外场的相互作用机制及调控规律的核心科学问题,通过催化剂表界面结构调控的新方法,旨在使生物质气化过程中伴随产生的焦油等稠环大分子的精准活化原位催化裂解为小分子可燃气体的同时,降低原位转化催化剂上的积炭,保持催化剂活性,产生的CO再与水蒸汽变换重整生成CO2,CO2通过捕集剂的作用克服变换重整反应中化学平衡的限制,进一步向生成氢的方向移动,提高氢的含量;课题将涉碳化学键的催化活化新机制、新途径为研究重点,通过催化剂表界面结构调控以实现碳基焦油载能分子的高效转化,研究其调控机制与实现方法,揭示了碳基焦油原位催化转化与CO2捕集促进生物质转化制氢的的反应机理与关键路径,为其工业应用提供理论基础与科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
针对弱边缘信息的左心室图像分割算法
播种量和施氮量对不同基因型冬小麦干物质累积、转运及产量的影响
不同pH条件下小球藻氨氮处理及生物质生产能力
Functionalization and Fabrication of Soluble Polymers of Intrinsic Microporosity for CO2 Transformation and Uranium Extraction
贵州织金洞洞穴CO2的来源及其空间分布特征
生物质原位半焦催化裂解焦油反应过程机理研究
多集总生物质焦油催化蒸汽重整及释氢机理
双功能钙基催化剂的制备及其催化裂解生物质焦油制氢机理研究
原位合成整体式生物质气化焦油裂解催化剂研究