Conventional biomass gasification has high tar content and low content of H2 which hold the application of biomass energy back, how to improve the content of H2 and eliminate carbon deposit on the cracking and reforming catalyst is the key in the process of hydrogen production from biomass. This project will focus on the core scientific problem about the interaction mechanism and regulation rules between the catalyst solid surface characteristics and environment , the external field. A new method of interface structure regulation through catalyst is put forward, which aims to make tar concomitantly produced with biomass gasification such as large molecules polycyclic aromatic hydrocarbon precisely activated and in situ cracked into small molecules fuel gas, at the same time, reduce the carbon deposit on the cracking and reforming catalyst, and keep the activity of catalyst, the CO again take the transform reforming reaction with steam to generate CO2, the role of CO2 capture agent overcomes the limitation of chemical equilibrium in reforming reaction, which further generate hydrogen, and improve the content of hydrogen; the project will be involved in the new ways for the catalytic activation mechanisms of carbon bonds, the catalyst interface structure regulation to realize the tar efficiently converted, and study its regulatory mechanism and implementation method, reveal the in situ reaction mechanism of carbon-based tar catalytic conversion and CO2 capture to promote critical path forward to hydrogen production from the biomass conversion, provide theoretical foundation and scientific basis for its industrial application.
常规的生物质气化制氢焦油含量高、H2含量低,严重阻碍了其应用,如何提高H2含量以及消除焦油转化催化剂上的积炭是生物质制氢过程中的关键。本课题将针对催化剂固体表面特性与环境和外场的相互作用机制及调控规律的核心科学问题,通过催化剂表界面结构调控的新方法,旨在使生物质气化过程中伴随产生的焦油等稠环大分子的精准活化原位催化裂解为小分子可燃气体的同时,降低原位转化催化剂上的积炭,保持催化剂活性,产生的CO再与水蒸汽变换重整生成CO2,CO2通过捕集剂的固化作用克服变换重整反应中化学平衡的限制,进一步向生成氢的方向移动,提高氢的含量;课题将以涉碳化学键的催化活化新机制、新途径为研究重点,通过催化剂表界面结构调控以实现焦油载能分子的高效转化,研究其调控机制与实现方法,揭示焦油原位催化转化与CO2捕集促进生物质转化制氢的的反应机理与关键路径,为其工业应用提供理论基础与科学依据。
常规的生物质气化制氢碳基焦油含量高、H2含量低,严重阻碍了其应用,如何提高H2含量以及消除焦油转化催化剂上的积炭是生物质制氢过程中的关键。本课题针对催化剂固体表面特性与环境和外场的相互作用机制及调控规律的核心科学问题,通过催化剂表界面结构调控的新方法,旨在使生物质气化过程中伴随产生的焦油等稠环大分子的精准活化原位催化裂解为小分子可燃气体的同时,降低原位转化催化剂上的积炭,保持催化剂活性,产生的CO再与水蒸汽变换重整生成CO2,CO2通过捕集剂的作用克服变换重整反应中化学平衡的限制,进一步向生成氢的方向移动,提高氢的含量;课题将涉碳化学键的催化活化新机制、新途径为研究重点,通过催化剂表界面结构调控以实现碳基焦油载能分子的高效转化,研究其调控机制与实现方法,揭示了碳基焦油原位催化转化与CO2捕集促进生物质转化制氢的的反应机理与关键路径,为其工业应用提供理论基础与科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
煤/生物质流态化富氧燃烧的CO_2富集特性
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
夏季极端日温作用下无砟轨道板端上拱变形演化
生物质原位半焦催化裂解焦油反应过程机理研究
多集总生物质焦油催化蒸汽重整及释氢机理
双功能钙基催化剂的制备及其催化裂解生物质焦油制氢机理研究
原位合成整体式生物质气化焦油裂解催化剂研究