In consideration of the urgent demand of high-end equipment for high-performance structural-functional integrated ceramic/metal composite components, this project is focused on realization of the performance improvement and reliability control of composite components by optimizing the design of interfacial microstructures as well as transition zone compositions. Composite components with high reliability capable to withstand harsh environmental for long periods of time will be designed and prepared in this work. Controllable preparation technology of the alumina/kovar alloy components will be also developed. Performance evolution and optimization design of the alumina/kovar alloy components interface under harsh environment are planned to be assessed. The study includes the following three aspects. First, controllable preparation technology of integrated sintering for composite components will be developed through clarify relationship between the process parameters with connection performance and controlling of sintering process accuracy of the integrated technology. Second, the evolution and performance degradation mechanism of interfaces will be suggested based on the investigation of failure behavior and degradation processes of components prepared by integrated technology under a simulative harsh service environment. A proposal for the optimization design of interface of composite components will be then proposed. Last, we will study how interfacial microstructure parameters and transition zone compositions affect interface reliability performance of the components, and further to establish principles and methods to regulate interfacial performance as well as to control reliability of the fabricated components. This project will enrich and develop preparation methods for ceramic/metal joints. It will also provide theoretical basis and technical support for understanding and solving problems associated with interfacial failure in harsh conditions with the final goal to improved reliability of resulting composite components.
针对国家高端装备对高性能结构-功能一体化陶瓷/金属复合组件的迫切需求,本项目拟通过对界面微结构与过渡区组分的优化设计来实现复合组件的性能提升与可靠性控制,发展在苛刻服役环境下具有高可靠性、长寿命的陶瓷/金属复合组件及其可控制备技术。开展氧化铝/可伐合金复合组件的性能演变及界面优化设计研究,主要包括三个方面:其一、通过一体化制备工艺精度的控制研究,明确复合组件界面性能与工艺参数之间的关系,发展复合组件的一体化可控制备技术;其二、考察基于一体化工艺制备的复合组件在严苛服役环境下的界面失效行为和退化过程,阐明组件界面演变规律和性能退化机制,提出界面优化设计方案;其三、探索界面精细结构和过渡区组分对其界面可靠性能的影响规律,发展界面性能调控及可靠性控制的原理与方法。本研究有助于丰富和发展陶瓷/金属复合组件的制备方法,为解决严苛环境下的界面失效难题和提高复合组件的界面可靠性提供理论依据和技术支持。
本项目针对航空航天、深海工程、核能、电子通信等领域国家高端装备对高性能结构-功能一体化陶瓷/金属复合材料及其组件的迫切需求,通过对陶瓷/金属复合材料结构-功能一体化设计实现了性能提升与可靠性控制,发展了在苛刻服役环境下具有高可靠性、长寿命的陶瓷/金属复合材料及其组件的可控制备和界面性能调控技术。通过一体化制备工艺精度的控制研究,明确复合组件性能与工艺参数之间的关系,发展复合组件的氧化铝/可伐合金一体化可控制备技术,同时考察了基于一体化工艺制备的氧化铝/镍复合材料在严苛环境下的界面失效行为和退化过程,阐明了氧化铝/镍复合材料明界面演变规律和性能退化机制;探索了氧化铝/氧化石墨烯复合材料界面精细结构对其力学性能和界面可靠性能的影响规律,发展了界面性能调控及可靠性控制的原理与方法。本研究丰富和发展了陶瓷/金属复合材料及其组件的制备方法,为解决严苛环境下的界面失效难题和提高复合组件的界面可靠性提供理论依据和技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
涡度相关技术及其在陆地生态系统通量研究中的应用
论大数据环境对情报学发展的影响
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
服役环境下钢管混凝土界面特征与性能优化
可伐合金与硅硼硬玻璃交互作用
冻融作用下热塑性pCBT复合材料界面相性能演变机制与增效设计
空间辐照环境下软磁合金性能及精细结构演变的同步辐射研究