Focusing on the presents of high failure rate and absence of healthy status information of current wind turbines, the proposal mainly works on the optimal placement of status monitoring transducers for critical components of wind turbines and the failure' early warning mechanism for wind turbines' safe and reliable operation. The research focuses on the following aspects: (1) It is known whether the failure of wind turbine is able to be diagnosed is closely related to the number and the position of the transducers. After a detail analysis on the physical structure of wind turbine, an optimal placement model of sensors is proposed with an objective of minimization the number of the sensors and a set of constraints of the dynamic characteristic of each component and the condition of failures' predictable. Detail study on the solving method for the model is performed. (2) The physical model on failure of key components of wind turbine is established. Research is performed on the failure prediction method and associated solving algorithm of blade/pitch system and drive system. (3) A relation model of wind turbine status monitoring data and failure is established. Research is performed, based on the relation model, on the Research is performed on the failure prediction method and associated solving algorithm of blade/pitch system and drive system. (4) Research on the techniques associated with the smart transducer network for the evaluation of wind turbines' healthy condition. This project will provide theoretical and technical support for the safe and reliable operation of wind turbines also will provide scientific guidance for reliable design of wind turbine. Especially, it is very important to lower failure rate, increase available operation time, reduce the cost on preventive maintenance and expensive fault maintenance.
本项目主要针对目前风电机组故障率高、健康状态监测信息不足这一突出问题,研究风电机组关键部件状态监测点优化定位和这些部件早期故障预测方法等问题。具体研究内容:(1)鉴于设备故障可诊断性与传感器配置的数量、位置等关系密不可分,提出从风机物理结构进行分析,建立以传感器最少数量为目标,以各部件动态特性和故障可测性为约束的测点优化定位模型,并研究解该优化问题的计算方法;(2)建立风机关键部件关于故障的物理模型,研究基于物理模型的叶片/变桨距系统和传动系统的故障预测方法及相关算法的实现;(3)建立风机监测数据与故障的关系模型,研究基于数据关系模型的叶片/变桨距系统和传动系统的故障预测方法及相关算法的实现;(4)研究构建风机实时健康状况评估的智能传感器网络的相关技术问题。课题的开展将为确保风机安全、可靠运行提供理论和技术支撑,同时也为设计功能更加完善的风机提供科学依据。
本项目主要针对目前风电机组故障率高、健康状态监测信息不足这一突出问题,研究风电机组关键部件状态监测点优化定位和这些部件早期故障预测方法等问题。. 主要研究内容:(1)从风机物理结构进行分析,建立以传感器最少数量为目标,以各部件动态特性和故障可测性为约束的测点优化定位模型,并研究解该优化问题的计算方法;(2)建立风机关键部件关于故障的物理模型,研究基于物理模型的叶片/变桨距系统和传动系统的故障预测方法及相关算法的实现;(3)建立风机监测数据与故障的关系模型,研究基于数据关系模型的叶片/变桨距系统和传动系统的故障预测方法及相关算法的实现;(4)研究构建风机实时健康状况评估的智能传感器网络的相关技术问题。. 取得了以下重要结果:(1)提出了基于风机驱动链系统动态模型的结构分析方法,实现了风机驱动链振动传感器的优化配置。成果有:2项发明专利;(2)提出了基于模型的风电机组变桨距系统故障检测方法;针对风机齿轮箱,提出了一种基于子空间方法的风机齿轮箱故障预测方法。取得的成果有:4篇核心学术论文,1项发明专利;(3)提出了一种基于变分模态分解和Teager能量算子的风机轴承故障诊断方法;为了分离风机不同部件的源信号,提高诊断的准确率,提出了一种基于盲源分离的风机故障诊断方法;另外,为了滤除风机振动信号中的噪声,提出了基于最大相关峭度解卷积的风电机组轴承早期故障诊断方法。成果有:9篇核心学术论文,5项发明专利;(4)提出了一种基于双线性观测器和电流的变流器故障诊断方法,实现了双馈式风电机组变流器的开路故障诊断。成果有:2篇核心学术论文;(5)针对风电机组的单部件,提出了基于时间延迟和考虑不完全维修的风机关键部件状态优化维修策略,此外,针对风电机组多部件间的配合,提出了风电机组机会维修策略。取得的成果有:4篇核心学术论文;(6)研制了风电场振动健康管理系统。成果有:1项发明专利。. 课题的开展将为确保风机安全、可靠运行提供理论和技术支撑,同时也为设计功能更加完善的风机提供科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于LASSO-SVMR模型城市生活需水量的预测
内点最大化与冗余点控制的小型无人机遥感图像配准
基于多模态信息特征融合的犯罪预测算法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
液压系统关键部件早期故障诊断与性能衰退预测技术研究
风电机组关键部件故障趋势预测方法研究
基于多状态流形演变机理驱动的风机传动链早期故障预测方法研究
风电机组关键部件故障机理与状态评估方法