Based on bioinspired concept, the multi-level structured surfaces can be fabricated to investigate the low-temperature water repellency and anti-icing materials,which is significant to decrease the ice damage on aerospace vehicle or power lines and so on. This project will break through the limitation of traditional materials on ice-phobicity, bioinspired gradient-integrated materials with low-temperature water repellency and anti-icing functions will be intent to be investigated based on biomimetic concept of water repellency mechanism from biological multi-gradient structures. The polymer and organic/inorganic composite materials will be selected to fabricate the smart multi-structures that are easy to induce the shedding-off of water condensed droplet and ice crystalline from the as-fabricated surfaces via the multi-techniques such as physical, chemical, nano-technological and so on. It will be further excepted to fabricate the light and flexible composite-structures and intelligent micro-/nanostructure gradient surface, to further obtain the performance parameters of robust low-temperature and anti-icing properties under ultra cold and humidity surroundings. A main route based on the dynamic controlling of ultra water repellency and ice-phobicity on bioinspired gradient surfaces is to reveal the repellency-related relationship of ice-crystalline and interfaces under different temperatures, and also to reveal essence at micro-/nano-level of icing delay time on the surfaces, to research the key factors of the adhesion, ultra-repellency, extreme shedding-off properties, to control carefully the static/dynamic behavior of icing on surface, to reveal the inherent factors between micro-/nanostructure and low-temperature/anti-icing, to reveal the micro-level mechanism of controlling the ice-phobic/anti-icing dependence on multi-structures. This project is significant reference to design the novel materials with anti-icing functions.
基于仿生理念,构筑多层次结构表面的低温超疏水/防覆冰功能材料体系,对抵抗航空航天飞行器、输电缆线的冰冻损害有重要意义。本课题拟从生物多梯度结构憎水效应机制出发,突破现有防覆冰材料研究的局限性,通过综合运用物理、化学、纳米技术等交叉技术,构筑仿生尺度微纳米结构易于引发智能性覆冰脱离表界面,通过构筑轻质、柔性的多级复合结构与智能响应性结构复合集成的仿生微纳米结构梯度表面,以获得极端条件下高性能低温憎水/防覆冰性能参数。以仿生梯度界面动态调控极端疏水/憎冰性为研究主线,揭示不同温度变化率引发的冰晶结构与界面之间的憎斥依赖关系,揭示表面对冰晶形成的延时特性的微观实质。研究不同微观结构与冰晶形貌之间脱粘附、超排斥决定因素。精细调控表面对液滴的静/动态憎水行为,揭示微观结构与低温超疏水/防冰的内在因素,揭示依赖微纳米结构调控的疏冰/防冰微观机制,发展实用化的性能优异的仿生憎水/防覆冰材料。
本项目工作开展是基于仿生理念,构筑多层次结构表面的低温超疏水/防覆冰功能材料体系,研究中从生物多梯度结构憎水效应机制出 发,针对现有防覆冰材料研究的局限性,通过综合运用物理、化学、纳米技术等交叉技术(例如,生物模板,软刻蚀复型,纳米晶体形貌控制等技术与方法),构筑了仿生尺度微纳米结构的表面,构筑了轻质、柔性的多级 复合结构与智能响应性结构复合集成的仿生微纳米结构梯度表面。研究了不同温度变化率引发的冰晶结构与界面之间的憎斥依赖关系,以及表面对冰晶形成的延 时特性,不同微观结构与冰晶脱粘附特性,和微观结构与低温超疏水/防冰以及微纳米结构调控的疏冰/防冰微观机制。相关研究发表SCI论文27篇,其中影响因子大于5的10篇,大于10的5篇。该项目取得的研究结果对新型防覆冰材料的设计及防覆冰机理的深入探究和材料的应用有重要的参考价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
2016年夏秋季南极布兰斯菲尔德海峡威氏棘冰鱼脂肪酸组成及其食性指示研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
仿生超滑微纳复合结构表面防覆冰机理及其可控制备
超疏水铝基表面的构建、结构及防覆冰和抗腐蚀行为研究
超憎水涂层微结构对其低温动态憎水性影响规律的研究
基于仿生各向异性结构的表面及其覆冰定向脱离调控