During the processing of complex minerals by microwave radiation technology, there are many problems existing in the process, such as the complicated analytical calculations of the interaction process of complex minerals, the difficulty of the optimization of the migration and separation processes, and the accurate control of the processes of reaction and the transfer of the elements, etc. The project mainly focuses on the microwave treatment of the typical complicated polymetallic encapsulated ore system-ilmenite concentrates with high contents of calcium and magnesium in Panzhihua area, China, carrying out the investigations on the enhanced reduction of low-grade ilmenite concentrate (grade 35%-47%) by microwave heating under the actual conditions of obtaining titanium-rich material, studying on the establishment of the analysis model of the integral equivalent circuit for the interaction process between microwaves and ilmenite concentrates; establishing the optimal time and boundary controls for the transfer and separation of valuable elements in the metallurgical process of titanium resources, obtaining the optimal control mechanism for synergetic reinforcement of reaction and unit transfer processes, by using the characteristics of the scale distribution, time distribution, function distribution, spatial distribution and resource distribution for the interaction system of microwave and materials. The achievements of the project can help solve the problems of the complicated analytical calculations of the interaction process of complex minerals, the difficulty of the optimization of the migration and separation processes, and the accurate control of the processes of reaction and the transfer of the elements existing during the complex interaction process of microwave metallurgy process, which will further promote the development and application of microwave metallurgy, and expand the application field of microwave technology, having theoretical value and practical significance.
微波辐射技术处理复杂矿物相互作用过程的解析计算复杂、组元迁移及分离过程的寻优难度大、反应过程与组元传递过程难以精确调控等问题。本课题以微波加热处理典型的多金属复杂包裹矿石体系—我国攀枝花地区的高钙镁钛精矿为对象,利用微波与物料相互作用系统具有尺度分布、时间分布、功能分布、空间分布、资源分布等特点,开展微波加热强化还原低品位钛精矿(品位35%-47%)获取富钛料的实际需求下,微波与钛精矿相互作用过程的整体等效电路分析模型构建研究,建立钛资源冶金过程有价组元迁移及分离的时间最优控制与边界最优控制,获取反应过程与组元传递过程协同强化的优化控制机制。研究成果有助于解决现有微波冶金过程相互作用过程的解析计算复杂、组元迁移及分离的过程寻优困难、反应过程与组元传递过程难以精确调控等问题,将进一步促进和推动微波冶金的发展和应用,拓展微波技术的应用领域,具有理论价值和实践意义。
本项目围绕微波辐射技术处理复杂矿物相互作用过程的解析计算复杂、组元迁移及分离过程的寻优难度大、反应过程与组元传递过程难以精确调控等问题,展开了一系列研究。传统的微波与多金属矿物相互作用过程的机理模型一般由多个高维偏微分方程组成,其描述了微波电磁场、温度场间的耦合演变关系,但是这类机理模型具有维度高、非线性、不确定性、时变性等特点,使得直接利用传统机理模型开展工艺优化、最优控制各项研究十分困难。同时,以钛精矿等为代表的多金属矿物成分复杂、组元行为多样,这些特点使得对微波与多金属矿物相互作用过程进行建模分析和最优控制更加复杂。为此,本项目针对微波与多金属矿物相互作用过程,完成了如下几个方面的主要研究工作和成果:1)基于人工智能理论开发了多金属矿物组分智能识别方法;2)开发了结构抽象化伪两相算法等多金属矿物组分分析方法;3)基于场路结合等方法开发了相互作用过程的等效电路模型建模方法;4)基于谱伽辽金方法、奇异值分解等方法开发了相互作用过程的高效、精确机理模型建模方法;5)基于突变理论提出了相互作用过程的热失控分析方法;6)提出了针对微波与多金属矿物相互作用过程的双层模型优化预测算法、模型依赖的平均驻留时间算法、多智能体分布式协同、自适应动态规划、无模型滑模自适应的最优控制方法;7)提出了相互作用过程的工艺优化方法;8)提出了微波源等硬件设备的故障识别方法;9)开发了相应的仿真和实验平台。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
基于机器视觉的矿物浮选过程建模与优化控制
微波烧结多物理场耦合过程的实验、建模与模拟方法研究
化工过程CIMS建模分析,优化管理及最优控制研究
煤燃烧过程中燃料氮与煤中矿物质的相互作用