The high-speed train in China operates in the special service environment including high-frigid, high temperature and sand environment, which is different from other countries' service environment. The damage and failure of wheel/rail materials show new phenomena and rules, which seriously endangers the operation safety of high-speed railway. Firstly, the dynamic damage behaviors of high-speed wheel/rail materials would be investigated under the high-frigid and sand service environment by means of high-speed wheel/rail simulating experiment and numerical simulation analysis. The effect of high-frigid and sand environment on the wear and microstructure evolution law of high-speed wheel/rail materials would be studied and explored. Moreover, the fatigue damage and crack evolution characteristics of high-speed wheel/rail materials under the complex environment would be clarified. Secondly, the interaction mechanism between the wear and fatigue damage of high-speed wheel/rail materials would be analyzed by means of the wheel/rail wear and fatigue damage model and experimental results. The damage transitions mechanism of high-speed wheel/rail materials would be clarified under different environment conditions. Furthermore, the failure mechanism of high-speed wheel/rail materials under the high-frigid and sand service environment would be revealed. Finally, the adhesion characteristics of high-speed wheel/rail interface under the high-frigid and sand service environment would be studied. The effects of service environment on the security service performance of high-speed wheel/rail materials would be clarified. The prevention and mitigation measures for the damage and failure of high-speed wheel/rail materials under the high-frigid and sand environment would be proposed. The research results can provide significant theoretical support and technical guidance for ensuring the safe operation and reliable service of high-speed railway wheel/rail system under the high-frigid and sand special service environment in China.
我国高速列车运行于高寒、高温、多风沙等有别于其它国家的特殊服役环境,其轮轨材料损伤与失效表现出新的现象和规律,严重危及高速铁路的运行安全。项目通过高速轮轨模拟实验并结合数值仿真分析,首先,研究高寒与风沙环境下高速轮轨材料的动态损伤行为,探明高寒、风沙环境对高速轮轨材料磨损与微观组织结构演变规律的影响,阐明复杂环境下高速轮轨材料疲劳损伤与裂纹演变行为;其次,建立轮轨磨损-疲劳损伤模型并结合实验结果,分析高速轮轨磨损与疲劳损伤的交互作用机制,阐明不同环境下高速轮轨材料损伤的转变机制,揭示高寒与风沙环境下高速轮轨材料的失效机制;最后,研究高寒、风沙环境下高速轮轨界面黏着特性,阐明服役环境对高速轮轨材料安全服役性能的影响,提出预防与减缓高寒风沙环境下高速轮轨材料损伤与失效的方法和措施。项目研究成果可为保障我国高速铁路高寒、风沙特殊环境下的轮轨安全运行和可靠服役提供重要的理论支撑和技术指导。
我国地域广阔,高速列车运行于高寒、高温、风沙等有别于其它国家的特殊复杂服役环境,高速轮轨材料服役损伤与失效呈现新的现象和规律,带来了轮轨低温脆断及疲劳损伤等世界性难题,成为亟需研究和解决的一个关键基础科学问题。.项目紧密围绕高寒与风沙环境下高速轮轨材料磨损与疲劳损伤之间的竞争机制及微观组织结构演变等关键科学问题,系统开展了如下研究内容:(1)开展了复杂环境下车轮和钢轨损伤的现场调研与分析,明确了损伤形式、成因及关键影响因素;(2)研究了低温环境下轮轨界面黏着特性、磨损机制、损伤规律及低温下钢轨拉伸疲劳性能及裂纹扩展速率,揭示了低温环境下高速轮轨材料磨损及损伤失效机制;(3)开展了钢轨风沙冲蚀及风沙环境下轮轨滚动试验,揭示了钢轨冲蚀磨损规律和损伤机制;(4)研究了硌伤缺陷尺寸及形貌对钢轨滚动磨损与接触疲劳性能的影响,分析了表面硌伤缺陷轮轨近场材料的微观织构演化规律;(5)开展了干态下大功率机车车轮材料剥离性能试验,研究了滚动接触疲劳剥离行为与失效机制。.项目通过研究揭示了低温环境下轮轨低黏着发生机理与轮轨材料磨损规律及失效机制,阐明了风沙环境下钢轨材料冲蚀磨损规律和损伤失效机制。成果有力支撑了我国高寒风沙环境下高速铁路轮轨系统的安全运行及可靠性服役。部分成果已用于指导攀钢集团高寒区铁路微合金化钢轨设计,为川藏铁路新材质钢轨研制提供了重要理论和技术支撑。.项目研究发表(含接收)论文37篇,其中SCI论文22篇、EI论文12篇(不重复计算);授权发明专利3件、实用新型专利3件,登记软件著作权1件;培养毕业博士生3名、硕士生7名;1篇论文荣获2018年钢轨使用技术学术交流会优秀论文。项目组成员参加国际会议报告6次(大会邀请报告1次)、国内会议报告8次(邀请报告5次),主持举办2021年第二届中捷轨道交通轮轨摩擦学双边研讨会。.项目部分研究成果获教育部自然科学一等奖、四川省科技进步一等奖各1项;第一主研王文健研究员2020年入选国家“万人计划”青年拔尖人才、第十三批四川省学术和技术带头人。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
中国参与全球价值链的环境效应分析
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
高寒高速列车制动盘表面复合材料逆向设计及动态失效机理
高速车轮不圆顺的轮轨动态响应及损伤机理与规律研究
高速轮轨动态接触与蠕滑界面行为研究
基于动态服役环境轮轨激振下的高速动车组齿轮箱体裂纹产生机理研究