In order to realize ultra-high precision sensing and application of the laser self-mixing effect, the self-mixing effect of the laser is induced to optoelectronic oscillation system. By using the photoelectric interaction, the laser linewidth is to be narrowed, the frequency resolution is to be improved and the phase noise will be eliminated, so that we will effectively solve the difficulty of improving the measurement accuracy for self-mixing laser sensing technology. Based on the physical mechanism of self-mixing optoelectronic oscillation, the laser self-mixing optoelectronic oscillation sensor system is presented, which can convert the change of the quantity to be measured into the variation of the oscillation frequency, and it can be measured with the power spectrum. High Q value optical cavity is used to filter the side-mode oscillation, to suppress the phase noise. To improve the spectral accuracy and resolution, the spectral linewidth narrowing is explored. For the atmosphere, biological and material properties measurement of scientific research and practical application, the experimental system and method for ultra-high precision measurement are investigated using the self-mixing optoelectronic oscillation. The measurement accuracy is more than 3 orders of magnitude than the existing measurement techniques, new sensing applications are produced, which can meet the requirements of many major national engineering technologies. This project is significant for the new type photoelectric sensor system, the high performance of modern instrument development, and it is better to meet the needs of national defense, aerospace, high-level equipment manufacturing, medical, scientific research and other important applications, also to promote the development of optoelectronic information technology.
为了实现激光自混合超高精度传感及应用,将激光自混合效应融合到光电振荡系统,利用光电交叉相互作用进行频移变换、提高频率分辨、压窄激光线宽、消除相位噪声,有效解决自混合传感技术所面临的测量精度提高困难的技术瓶颈。在自混合光电振荡传感的物理基础上,提出自混合光电振荡激光传感系统,使被测物理量的变化在外光反馈的光电振荡中转换为振荡频率变化并实现电谱测量;研究高Q值光腔滤除振荡边模,抑制相位噪声,探索光谱线宽压窄,提高光谱精准度和测量分辨率。针对大气、生物生理、材料物性测量等科学研究和实际应用,提出自混合光电振荡超高精度测量的实验系统和实验方法,测量精度比现有测量技术提高3个数量级以上,形成新型传感应用,满足许多国家重大工程的技术要求。本项目研究对于高性能新型光电传感系统、现代仪器开发,更好地满足国防、航空航天、高端装备制造、医疗、科学研究等重要应用需求,推动信息光电子技术的发展具有重要的意义。
项目组围绕自混合光电振荡实现超高精度传感测量应用的研究目标,研究了自混合光电振荡的物理机制、光电振荡系统的实验构建、自混合光电振荡混沌现象及频域带宽调控、超窄线宽微纳相移光纤光栅及啁啾光栅F-P腔传感器的设计与制备,以及高温环境超高精准度温度监测、环境湿度测量及刚体挠度测量等传感应用;解决了基于光和微波交叉作用的“光—电频率转换”大幅度提升测量精度的科学和技术问题,实现了环境湿度、刚体挠度的传感应用及500℃高温环境下0.0083℃温度分辨率的超高精准温度监测,实现了频域带宽可自由调控混沌光纤激光器及泵浦可调控40 GHz以上超宽带混沌光纤激光器。项目研究成果为高温环境下材料科学研究、工业生产(如:材料成型、晶体生长、生物制药等)超高精准温度监控提供了可行的技术方案;所研究的自由可调控超宽带混沌激光为大容量混沌激光信息存储、光纤保密通信、高灵敏混沌激光传感等应用开辟了新的途径,具有重要的科学和应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
特斯拉涡轮机运行性能研究综述
基于SSVEP 直接脑控机器人方向和速度研究
中国参与全球价值链的环境效应分析
基于光电振荡的高精度快响应多参量光纤传感技术研究
基于光电混合振荡的窄线宽光源研究
新型可调谐光电微波振荡器及应用研究
超高精度力传感器的研究