复空间形式的全纯等距嵌入问题研究

基本信息
批准号:11601422
项目类别:青年科学基金项目
资助金额:19.00
负责人:郝毅红
学科分类:
依托单位:西北大学
批准年份:2016
结题年份:2019
起止时间:2017-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:万建明,褚海丰,赵芳,邢鹏飞
关键词:
拟凸域不变度量全纯自同构群Bergman度量Kähler流形
结项摘要

In Kaehler geometry, the embedding problem, i.e. the existence of the holomorphic isometric embeddings form a Kaehler manifold into another classical Kaehler manifold, is a fundamental problem. Let the complex space forms be the classical Kaehler manifolds. In the case that the original manifold is homogeneous, there are abundant results. While in the other case, the problem becomes more difficult. That is because there is no united method to study such manifolds. In this project, we will study the embedding problem form pseudoconvex domain embedded Kaehler-Einstein or other classical Kaehler metrics into complex space forms in the function theory of several complex variables. Such domains can be considered as noncompact nonhomogeneous manifolds. To solve such problem can help us to study the classification problem of the submanifolds of complex space forms. The Kaehler potential function of Kaehler-Einstein metric on pseudoconvex domain will also be studied. This problem has many important applications in embedding problem, the comparison theorem of metrics and so on. In several complex variables and complex geometry, this research direction has attracted many mathematicians to study.

一个 Kaehler 流形能否全纯等距嵌入于一个典则的 Kaehler 流形是Kaehler几何学的一个基本问题。考虑复空间形式作为被嵌入的典则 Kaehler 流形。当嵌入流形是齐性空间时,研究结果比较丰富。当嵌入流形是非齐性空间时,问题变得更加复杂,很难用一套方法进行统一研究。本项目将在多复变函数论范畴内,利用函数分析和矩阵计算的技巧,研究赋予完备 Kaehler-Einstein 度量或其它典则 Kaehler度量的拟凸域到复空间形式的全纯等距嵌入问题。这类研究对象可看做一类非齐性非紧致的 Kaehler流形。该问题的解决将有助于研究复空间形式子流形的分类问题。 此外,拟凸域上的 Kaehler-Einstein 度量的 Kaehler 势函数也是本项目的研究内容。这个问题在全纯等距嵌入,度量比较理论,曲率计算等许多方面有重要应用,是多复变和复几何方面的专家学者一直关心的研究内容。

项目摘要

Kaehler流形到复空间形式的全纯等距嵌入映射的存在性问题是复几何里的基本研究内容。本项目的主要研究对象为赋予自然Kaehler度量的拟凸Hartogs域。主要结果如下:1、拟凸Hartogs域到三种复空间形式的全纯等距嵌入映射存在性的判别法则。2、拟凸Hartogs域上的全纯自同构群的结构。3、拟凸Hartogs域上自然Kaehler度量是完备Kaehler-Einstein度量的充要条件。4、正Hermite线丛上单位球丛上完备Kaehler-Einstein度量、极值度量的存在性.。研究结果不仅有助于复空间形式的嵌入子流形的分类,也有助于拟凸Hartogs域相关性质的刻画和分类。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction

Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction

DOI:10.1080/15287394.2018.1502561
发表时间:2018
2

1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合

1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合

DOI:10.3870/j.issn.1001-4152.2021.10.047
发表时间:2021
3

基于全模式全聚焦方法的裂纹超声成像定量检测

基于全模式全聚焦方法的裂纹超声成像定量检测

DOI:10.19650/j.cnki.cjsi.J2007019
发表时间:2021
4

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究

DOI:
发表时间:2020
5

当归红芪超滤物对阿霉素致心力衰竭大鼠炎症因子及PI3K、Akt蛋白的影响

当归红芪超滤物对阿霉素致心力衰竭大鼠炎症因子及PI3K、Akt蛋白的影响

DOI:10.3969/j.issn.1008-0805.2022.07.18
发表时间:2022

郝毅红的其他基金

相似国自然基金

1

多复变全纯等价问题

批准号:11271291
批准年份:2012
负责人:涂振汉
学科分类:A0202
资助金额:56.00
项目类别:面上项目
2

多复变全纯映照、全纯函数及相关问题的研究

批准号:11561030
批准年份:2015
负责人:徐庆华
学科分类:A0202
资助金额:35.00
项目类别:地区科学基金项目
3

多复变数全纯映射与函数空间的若干问题研究

批准号:11101139
批准年份:2011
负责人:唐笑敏
学科分类:A0202
资助金额:23.00
项目类别:青年科学基金项目
4

多复变数全纯Campanato空间和Schwarz引理若干问题的研究

批准号:11671362
批准年份:2016
负责人:王建飞
学科分类:A0202
资助金额:48.00
项目类别:面上项目