The Two-Dimensional real-time Spectrograph (TDS), keeping the solar imaging function that traditional birefringent filters have, can also get solar Stokes parameter profiles. Thus, TDS meets the requirements of imaging and spectrum simultaneously in solar physic observation. It is an new generation of solar observation equipment invented by Chinese scientists, and will be an important scientific instrument for the next generation advanced space- and ground-based solar telescopes. Same as traditional birefringent filters, TDS requires sky-high temperature stability (0.01℃ in an outdoor environment). But it is harder to be realized. Comparing with the traditional structure, TDS has an irregular shape and a large volume. The traditional temperature control scheme is no longer available. High precision and high stability of temperature control has become an important task that needs to be addressed urgently for TDS. The Wireless Sensor Network (WSN) technology integrates wireless transmission technologies with sensor technologies, in which the sensor nodes are highly integrated and miniature, and the data is transmitted in wireless over long distance. The multi-node long-distance real-time temperature control becomes simple and available, and becomes the supplement of the traditional equipment. It is especially available for the temperature control system of TDS. By the study, the problems on size, power consumption and intelligence of the nodes can be solved, which are caused by the characteristics of TDS temperature control such as multi-nodes, long-distance and irregularity. It may help lay a foundation for key technologies of TDS made breakthroughs. Meanwhile experience is gained for which WSN technology is extended to other astronomical observation equipment.
两维实时光谱仪(TDS)在保留传统双折射滤光器对太阳实时成像功能的基础上,可获得太阳Stokes参数轮廓,满足太阳物理观测同时成像和成谱需求,是我国科学家发明的新一代太阳观测设备,将是下一代空、地基先进太阳望远镜的重要科学终端。与传统双折射滤光器一样,TDS要求极高温度稳定度(0.01℃,室外),但难度更大。因为与传统结构相比,TDS形状不规则且体积庞大,传统温控方案不再适用,高精度和稳定度温控成为TDS研究迫切需要解决的重要课题。无线传感技术将传感器和无线传输技术融为一体,监测节点智能和微型化,所测数据无线远距离传输,使多节点远程参数监控变得简单可行,弥补了传统仪器的不足,特别适合于TDS高精度温控系统。通过研究,希望解决两维实时光谱仪不规则多点远程温控所面临的监测点体积、功耗、传输及智能化等问题,为TDS关键技术攻关奠定基础,同时也可为无线传感技术在其他天文观测设施的推广应用积累经验。
两维实时光谱仪(TDS)可满足太阳物理观测同时成像和成谱的需求,是我国科学家发明的新一代太阳观测设备,将是下一代空、地基先进太阳望远镜的重要科学终端。TDS要求极高温度稳定度(0.01℃,室外环境),但因其形状不规则且体积庞大,传统温控方案不再适用,高精度和稳定度温控成为TDS研究迫切需要解决的重要课题。. 无线传感技术将传感器和无线传输技术融为一体,监测节点智能和微型化,所测数据无线远距离传输,使多节点远程参数监控变得简单可行,弥补了传统仪器的不足,特别适合于TDS高精度温控系统,具有重要的应用价值。. 本项目以国家天文台的两维实时光谱仪TDS为研究对象,对其无线高精度温控的关键问题进行重点研究。首先提出并实现了一套满足TDS要求的无线远程高精度温度监测解决方案,尤其是其中传感器节点设计采用了本项目提出的高精度测温电路,并与测温控制电路、无线收发电路以及天线集成在4.9cmx2.0cm的柔性PCB板上,测温分辨率为0.0002℃,精度为0.02℃,直接无线传输距离达60m,且可以在上位机自动控制下建立或重建数据通信,不需人工干预。上位机端可远程控制与传感器节点的通信,实现多个传感器节点测温数据接收、存储及管理。其次,研究了相关的TDS环境无线信号电磁屏蔽、数据校准以及高精度温度测量技术等,旨在进一步研究所设计系统的可靠性,进一步提高测量精度。此外,本项目还研究了相关的IC设计技术,包括:高精度ADC、基于压缩传感的CMOS图像传感器电路以及数字信号处理电路等,为后续研究中实现传感器节点芯片集成储备了一定的技术和经验。. 本项目共获得21项成果,其中发表7篇学术论文(1篇SCI,3篇EI/ISTP检索,3篇中文核心期刊),申请发明专利2项(已公开),获得授权发明专利1项,11篇硕士学位论文。. 但温度测量精度未能达到设计指标,有待于后续研究中解决。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于二维材料的自旋-轨道矩研究进展
空气电晕放电发展过程的特征发射光谱分析与放电识别
内质网应激在抗肿瘤治疗中的作用及研究进展
基于无线传感器网络的湿地水环境远程实时监测系统关键技术研究
工业级严格实时无线传感网在云南智能电网的关键技术研究
认知无线传感网络关键技术研究
基于事件的无线传感器网络路由关键技术研究