Considering the synergetic Li-storage advantages from multiple metal species, spinel ZnMn2O4 (ZMO) is becoming one of researching hotspots in Li-ion batteries (LIBs). With low Colombic efficiency, modest electronic conductivity and the conflict between high capacity/long-cycle life and structural stablility, herein, we proposed controllable synthesis of high-performance mini-hollow ZMO@conducting polymers (CPs) microspheres with yolk-shell structure via elegant combination of fine experiments, and theoretical modeling and mathematical simulation, acoording to the synergetic contribution from “mini-hollow”, “yolk-shell” and “stable SEI”. The underlying one-step bottom-up formation mechanism and the influence of hollow volume upon structural stability were revealed in detail. With in-/ex-situ charactrizations and typical electrochemical devices, complex Li-storage processes from multiple species and abnormal capacity-increase mechanism were presented on atomic scale. The effecting mechanism of CPs type, void microstructure, sur-/interface charge transfer between functional components on the enhancement in electrochemical Li-storage behaviors and stablizing mechanism of SEI were demonstrated. The inherent relationship and interaction theory between functional composition/component, microstructure, and electrochemical Li+-storage performance were rationally established. Finally, new insights and fundamental guidance were provided for further design, fabrication and practical applications of high-performance anodes for advanced LIBs.
鉴于多元金属协同储锂优势,尖晶石结构ZnMn2O4成为目前锂离子电池负极材料研究重点之一。针对其库伦效率低、导电性差、高比容量/长寿命与其结构稳定性不可兼顾的关键问题,在研究基础上,本项目拟基于“小空心”、“yolk-shell”和“稳定SEI膜”耦合作用理念,采用实验精细调控和理论模拟计算有机融合,可控构筑高性能小空心ZnMn2O4@导电聚合物yolk-shell结构微球负极材料。揭示“小空心”ZnMn2O4微球“自下而上”一步形成机制及空心体积对其结构稳定性的影响规律。借助(非)原位表征及电化学装置,微尺度阐明复杂多组元协同储锂及反常容量“递增”机制。获知导电聚合物种类/存在形态、空腔结构、功能组分表/界面传荷对储锂性能提升的作用机制及SEI膜稳定机理。构建“功能组元/组分−微结构−电化学储锂性能”内禀构效关系及作用规律,为先进锂电池负极材料设计、构建及应用开发提供理论指导和科学依据。
鉴于多元过渡金属协同储锂优势,尖晶石结构锰酸锌(ZnMn2O4)成为目前锂离子电池负极材料的研究热点和重点之一。针对ZnMn2O4首次库伦效率低、自身电子导电性差、高比容量/长寿命与其结构稳定性不可兼顾的关键瓶颈难题,本项目基于“小空心”、“yolk-shell”和“稳定SEI膜”复合耦合作用理念,采用精细实验调控和理论模拟计算有机融合,可控构筑了高性能小空心ZnMn2O4@导电聚合物yolk-shell结构微球负极材料。深入揭示了“小空心”ZnMn2O4微球“自下而上”一步形成机制及空心容积对其结构稳定性的影响规律和内在机制。并借助(非)原位表征及电化学装置,微尺度系统阐明了复杂多组元协同储锂及反常容量“递增”作用理论。获知了导电聚合物种类/存在形态、空腔微观结构、功能组分表/界面传荷对电化学储锂性能提升的作用机制及SEI膜稳定机理。最终构建了“功能组元/组分−微结构−电化学储锂性能”内禀构效关系及作用规律,为开发具有高比容量/高倍率、长寿命、高安全性和高结构稳定性新型低成本先进锂离子电池负极材料设计、构建及应用提供关键技术支持、器件原型和科学理论指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
基于细粒度词表示的命名实体识别研究
基于二维材料的自旋-轨道矩研究进展
新型中间相炭微球微纳结构调控与储锂性能构效关系的研究
配位均匀沉淀法可控合成双金属氧化物多壳层小空心球及储能构效关系研究
微/纳米结构导电聚合物/粘土复合材料的合成及其吸附重金属离子的构效关系
先进CHS结构柔性复合负极材料的可控制备及其储能构效关系研究