The adjustable solvent properties endow supercritical carbon dioxide (scCO2) unique significance in both theoretical studies and potentially industrial application to the synthesis of the fluorinated polymers (FPs). While the complicated intermolecular interactions in scCO2 system as well as the insufficiencies in the present high-pressure in-situ monitoring systems have brought great challenges and barriers to the further research and application of scCO2 in many fields, and actually been the bottleneck in restricting the investigation of synthesizing FPs in this green medium. Based on the subtle relevance between the intermolecular-interaction-dynamically-induced variation of the microenvironment or the molecular structures, which has been demonstrated in our resent research, and the detailed vibrational absorption evolution in the scCO2 system, which will been obtained by using newly constructed high pressure in-situ FTIR/NIR monitoring technology as well as theoretical calculation/simulation method, the intermolecular interactions between a series of fluorinated acrylate monomers (FM) and scCO2 are to be deeply and systematically investigated. The intermolecular interaction mechanism in the FM-scCO2 systems is to be revealed. And the impacts of the intermolecular interaction dynamically-induced special solvent effect on the phase behaviors as well as the polymerization kinetics of the FM-scCO2 free radical polymerization systems will also be announceed. Based on the above mentioned theoretical exploration, the feasibility and limitation of the homogeneous solution polymerization of the targeted FMs in scCO2 are to be invesigated. The exploration and innovation in this project are expected to gather experiences for the further development, popularization and application of the high-pressure in-situ FTIR/NIR monitoring system. Moreover, this research will provide a theoretical basis and technical progress to the realization of the homogeneous solution polymerization of FMs in scCO2, and contribute great to the industrial green production of FPs materials.
超临界CO2(scCO2)可调节的溶剂性能赋予其在含氟聚合物合成方面独特的理论意义和应用潜力,然而scCO2体系复杂多变的分子间相互作用以及当前高压原位监测技术手段的不足,给这一绿色技术的研究和应用带来了挑战。本项目将立足于申请者前期研究中揭示的scCO2体系变化过程中分子间相互作用动态诱导的分子结构或微环境变化及其与原位光谱之间的关联性,采用自主研制的高压原位中红外/近红外光谱监测系统和借助于化学计算/模拟技术,针对性地研究一系列含氟丙烯酸酯单体-scCO2聚合体系分子间相互作用及其机制,揭示由分子间相互作用动态诱导的溶剂效应对含氟单体-scCO2自由基聚合体系的相行为以及聚合反应动力学过程的影响规律,探索在scCO2中采用均相溶液聚合合成含氟聚合物的可行性及限度。本项目在scCO2理论思辨、技术创新及应用实践方面的尝试与探索,将为含氟聚合物的绿色合成提供理论依据和方法基础。
超临界二氧化碳(scCO2)可调节的溶剂性能赋予其在含氟聚合物材料合成及应用方面独特的理论意义和应用潜力。然而scCO2体系复杂多变的分子间相互作用却又给这一绿色技术的研究和应用带来了挑战。本项目紧紧围绕含氟单体/寡聚物/聚合物-scCO2体系分子间相互作用机制及其应用,从以下三个方面展开了系统的研究。.(1)含氟有机物-scCO2分子间相互作用机制。项目立足于scCO2体系变化过程中分子间相互作用动态诱导的分子结构或微环境的变化及其与原位光谱之间的关联性,采用可靠有效的高压原位红外光谱在线监测技术并借助于化学计算/模拟方法,分别选择含氟丙烯酸酯-scCO2以及含氟环氧寡聚物-scCO2体系为模型,引入转变压力以及分子间相互作用合力等概念系统地描述了含氟有机物(单体/寡聚物/聚合物)-scCO2体系分子间的相互作用,进一步发展了scCO2体系分子间相互作用动态诱导的溶剂化效应理论假说(Intermolecular-Interaction Dynamically Induced Solvation Effect,IDISE),揭示了含氟有机物-scCO2分子间相互作用机制以及含氟有机物亲CO2的本质。.(2)含氟丙烯酸酯单体的可控聚合。在IDISE假说指导下设计合成了3种末端含有五氟苯基的新型含氟RAFT试剂并将其应用于scCO2中含氟甲基丙烯酸酯单体的可控自由基聚合,采用高压原位近红外光谱技术在线跟踪监测了聚合过程获取了单体转化率随反应时间的关系曲线,研究scCO2中含氟单体的聚合反应动力学,探究并初步构建起基于scCO2体系均相溶液聚合制备含氟聚合物及含氟功能材料的绿色工艺方法。.(3)含氟环氧寡聚物基增溶链的应用。基于IDISE假说,选择含氟环氧寡聚物为高效增溶链设计合成3个系列类14种新型含氟螯合剂,研究了含氟螯合剂-scCO2体系相行为及分子间相互作用,并在此基础上探索并构建scCO2体系金属离子高效萃取新方法。.本项目的探索与实践为高压原位光谱系统的进一步完善和应用推广积累经验,为实现scCO2中含氟单体的均相溶液聚合以及含氟聚合物材料的绿色工业化奠定理论依据及方法基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
结核性胸膜炎分子及生化免疫学诊断研究进展
当归补血汤促进异体移植的肌卫星细胞存活
原发性干燥综合征的靶向治疗药物研究进展
空气电晕放电发展过程的特征发射光谱分析与放电识别
基于Pickering 乳液的分子印迹技术
含超临界流体体系相平衡及分子间相互作用规律的研究
基于分子间弱相互作用下三氟甲基芳基醚合成研究
可控结构含氟丙烯酸酯共聚物的合成及成膜自组装行为研究
复杂体系中分子间相互作用化学热力学研究