Goldbach-Linnik问题相关方程组的研究

基本信息
批准号:11426048
项目类别:数学天元基金项目
资助金额:3.00
负责人:孔亚方
学科分类:
依托单位:重庆交通大学
批准年份:2014
结题年份:2015
起止时间:2015-01-01 - 2015-12-31
项目状态: 已结题
项目参与者:
关键词:
圆法方程组GoldbachLinnk素数解问题
结项摘要

According to the even Goldbach problem in the analytic number theory, this program is to research systems of equations related to the Goldbach-Linnik problem. In order to show that parts of them are solvable, calculate the exact numerical result in the above solvable systems of equations including the number of powers of 2 and the up bound of small prime solutions, we apply the two-dimensional circle method, the large sieve inequality, estimate on the zeros of Dirichlet L-functions and so on. Through this research, we expect to show the feature that these systems of equations related to the Goldbach-Linnik problem with some necessary conditions on the coefficients are solvable, and establish the whole solution system of those systems of equations based on their structure characteristic. The research achievement will be meaningful in the research of solutions system of systems of linear equations with several variables and integral coefficients, and the distribution of prime solutions in the above systems of equations. Moreover, the research will provide the approach in the research of some special prime variable linear equations for example the even Goldbach problem.

针对解析数论中的偶数哥德巴赫问题,本项目以Goldbach-Linnik问题相关方程组为研究对象,采用二维圆法、大筛法型不等式、Dirichlet L 函数的零点密度估计等方法,研究该方程组解的存在性,确定解的结构,并深化该问题,确定2的幂次的个数以及小素数解的上界。项目预期将揭示Goldbach-Linnik问题相关方程组只需系数满足部分必要条件就存在解的特质,并根据该类方程组解的结构特点建立其全面的解体系。研究成果对阐明整系数多变量线性方程组求解理论,揭示该类方程组素数解分布规律具有重要意义,同时为研究特殊的整系数素变量线性方程,比如偶数哥德巴赫问题,提供思路。

项目摘要

本项目在Linnik方法趋近Goldbach问题的基础上,研究Golbach-Linnik相关方程组的解的存在性、解组中2的幂次的个数以及解组中小素数解的上界问题。通过利用二维圆法、区间上的指数和估计等方法,揭示出系数只需满足一系列必要条件的四个素变量的Goldbach-Linnik方程组都是有解的这一事实,计算出一类系数给定的该方程组的2的幂次的个数,还给出了此类方程组的小素数解一般上界。其中的关键数据有:计算上述2的幂次个数269所需的主区间上积分估计下界的系数是0.617023,次主区间上积分估计上界的系数是405.814,第三区间上关键常数lambda是0.975805; 推算出带有系数a(ij)且系数满足组成行列式非零的相关方程组的2的幂次是只与系数相关的函数。研究成果对阐明正整系数多变量线性方程组求解理论,揭示该类方程组素数解分布规律具有重要意义;同时为研究特殊的整系数素变量方程,比如Goldbach-Linnik问题,提供思路。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响

氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响

DOI:10.16606/j.cnki.issn0253-4320.2022.10.026
发表时间:2022
2

城市轨道交通车站火灾情况下客流疏散能力评价

城市轨道交通车站火灾情况下客流疏散能力评价

DOI:
发表时间:2015
3

基于FTA-BN模型的页岩气井口装置失效概率分析

基于FTA-BN模型的页岩气井口装置失效概率分析

DOI:10.16265/j.cnki.issn1003-3033.2019.04.015
发表时间:2019
4

肉苁蓉种子质量评价及药材初加工研究

肉苁蓉种子质量评价及药材初加工研究

DOI:10.11842/wst.2017.02.019
发表时间:2017
5

宽弦高速跨音风扇颤振特性研究

宽弦高速跨音风扇颤振特性研究

DOI:
发表时间:2021

孔亚方的其他基金

相似国自然基金

1

几个非线性Schrodinger方程组模型及相关问题研究

批准号:11271166
批准年份:2012
负责人:吕中学
学科分类:A0306
资助金额:50.00
项目类别:面上项目
2

拟线性双曲型守恒律方程组相关问题研究

批准号:11771274
批准年份:2017
负责人:盛万成
学科分类:A0306
资助金额:48.00
项目类别:面上项目
3

非线性双曲型守恒律方程组的相关问题研究

批准号:11101348
批准年份:2011
负责人:尹淦
学科分类:A0307
资助金额:22.00
项目类别:青年科学基金项目
4

Ericksen-Leslie液晶方程组中相关数学问题的研究

批准号:U1404102
批准年份:2014
负责人:马文雅
学科分类:A0306
资助金额:29.00
项目类别:联合基金项目