The core-shell structure of high catalytic activity nanoparticles (NPs) and MOFs usually possesses synergetic properties resulting from the respective components and is considered as an attractive catalyst of non-enzyme electrochemical sensor because of the prominent electrocatalytic performance. However, the research progress in the fields of electrocatalysis is relatively slow due to the restriction of low electrochemical performance of the existing materials. So it is an urgent need to develop a new electrocatalysis with high activity and selectivity to provide material basis for the correlation researches. According to the theory of coordination chemistry and electrochemistry, this project will design a new Ti@TiO2 nanowire electrode decorated with MxOy@In-MOFs heterogeneous structure for the electrochemical catalysis based on the previous works. The surface morphology, internal structure and electrochemical performance of these electrodes are characterized by SEM, TEM, XPS, XRD, I–T, I–V, EIS, DPV and RRDE to discuss the influence of the structure of electrode, the active components, pore structure and size of MOFs on the electrocatalytic activities of electrode. At the same time, the theoretical calculation will be carried out to explore the relationship of structure and performance in order to further investigate the influence factors to the electrocatalytic performance of the MxOy@In-MOFs core-shell structure. It will open up a new way to design the high active and selective electrocatalyst and provide the crucial material basis to the non-enzyme electrochemical sensors.
高催化活性的纳米粒子与金属有机框架化合物(MOFs)形成的核壳异质结构由于可同时具有两种材料的合成效应而具有突出的电催化性能,是一种诱人的无酶电化学传感催化剂。然而由于受现有材料性能的限制,其在电催化方面的研究较为缓慢,亟需高效、高选择性的电催化剂为相关研究提供物质基础。本项目拟以前期研究工作为基础,依照相关配位化学与电化学理论,开展新型In-MOFs “内装” MxOy活性组分的异质结构(MxOy@In-MOFs)修饰的Ti@TiO2纳米线电极的构筑,利用SEM、TEM、XPS、XRD、I-T、I-V、EIS、DPV和RRDE等表征电极的表面形貌、内部结构和电化学性能,从而研究电极结构、活性组分、MOFs孔结构和孔尺寸对电极电催化活性的影响,同时结合理论计算深入揭示此类材料结构与性能的关系,探索具有较高催化活性和选择性的电催化剂的设计思路,为无酶电化学传感器的研究提供关键的材料基础。
金属有机框架(MOFs)化合物由于具有较大的孔隙率和比表面积,较好的结构自适应性和灵活性,而被认为是一类优秀的电催化剂。本项目针对MOFs导电性差、本征活性低、电催化机理不完善等问题,通过异质结构筑、电化学原位活化、原位生长有序结构MOFs等方法,合成了一系列高效、稳定的MOFs基电催化剂,并将其应用于无酶电化学传感器和电催化水分解等领域,改善了MOFs基材料的导电性、提升了其本征活性、进一步阐明MOFs在电催化过程中的不同作用机制,拓展了MOFs基材料在电催化领域中的应用范围。为MOFs基电催化剂的广泛应用提供了丰富的实验与理论基础。..在本项目的支持下,再次获得了国家自然科学基金面上项目的支持(22072062),在ACS Energy Lett.(1篇), ACS Catal.(1篇), Appl. Catal. B: Environ.(1篇), J. Mater. Chem. A(3篇), ACS Appl. Mater. Interfaces(3篇),Chem. Commun.(3篇)等学术期刊上发表SCI学术论文30篇,参加学术会议4次并作邀请报告2次,同时邀请3人(次)来兰州大学进行学术交流。毕业博士研究生2名,硕士研究生7名,在读博(硕)研究生10名。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
内点最大化与冗余点控制的小型无人机遥感图像配准
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
新型自支撑薄膜电极的构建及其电催化析氢性能研究
核壳结构Co@PtM/石墨烯纳米复合材料的构筑及其电催化性能
基于壳层隔绝保护的MxN@Pt核壳结构电催化剂的制备与性能
核壳结构金属@金属氧化物阵列电极的设计、构筑及其增强析氧催化活性