Vacuum elements with extra-low conductance are widely used in vacuum calibration, vacuum leak detection, and gas sampling for analysis, etc. They were often made by micro-nano machining technology, and some organic glues were needed for sticking them on the metal vacuum systems. This leads to too high background outgassing rate, and the elements are unbakeable. In addition, this type of elements is also fragile, and easy to plug. In this study, the main works are: (1) The all-metal vacuum elements with extra-low conductance will be made using porous nickel with pore size of ~500 nm through systematic studies of methods and mechanisms on vacuum heat treatment and laser surface processing. The conductance is in the order of ~10^–9 L/s and the upper limit operation pressure is more than 10^4 Pa. (2) The performances of vacuum conductance elements will be studied systematically. It includes: ①element conductances for different gases and temperatures; ②influences of preparation processes on the conductance and the long term stability of elements; ③measurement of response times of elements for different gases and pressures. (3) The diffusion theory of absorption and outgassing for the nickel porous material will be investigated; the absorption and outgassing rates of the material will be measured; and the response times of conductance elements for different gases and pressures will be computed numerically with the measurement data.
真空极小流导元件广泛用于真空计量、真空检漏和气体采样分析等领域,常采用微纳加工技术制备,需用有机胶粘接于金属真空系统。这导致元件本底放气率大,不耐高温。此外,该类元件还易碎,易堵塞。这些缺陷限制了其工程应用。本项目主要内容:(1)采用孔径~500 nm的镍多孔材料,通过真空热处理和激光表面加工工艺以及相关机理的研究,制备流导~10^–9 L/s,分子流上限工作压力大于10^4 Pa,长期稳定性好,耐高温烘烤的全金属真空极小流导元件。(2)系统地实验研究真空流导元件性能。包括:①元件流导与气体种类、温度的关系;②制备工艺对元件流导和长期稳定性的影响;③不同气体与压力条件下元件的响应时间测量。(3)研究镍多孔材料的吸放气扩散理论;测量材料吸放气率;由测量数据数值计算真空流导元件在不同气体和压力条件下的响应时间。
真空流导元件广泛应用于真空计量、真空检漏、气体采样分析等领域。理论上孔的尺寸越小,气体流导越小,工作在分子流态下的上限压强越高。文献[J. Vac. Sci. Technol. B 27 (2009) 2347–2350;Vacuum 131 (2016) 111–114.]采用微纳加工技术,在氮化硅或氧化铝等薄片材料上制备了直径小于500 nm的微孔,得到了理想的元件性能。然而,这一类技术均需用到放气率较大的有机胶来粘合无机薄片和真空金属连接件。. 本项目采用多孔镍片(孔径100–800 nm,孔隙率46.2%,比表面积1.16 m2/g)和4-VCR盲镍垫片,制备了微型真空极小流导元件。分子流态下,元件典型流导约为~10–9 m3/s,Ar和N2的上限工作压强为5.0×104 Pa,He的上限工作压强为1.0×105 Pa。所研制的4-VCR型真空极小流导元件体积小,性能稳定,制造简单,与高真空系统的4-VCR接口兼容,使用非常方便,具有一定的实用价值。在制备过程中,为实现对表面多孔镍的密封,我们开发了一种原创制作工艺。即:多孔镍片一侧用5000–7000目砂纸手工抛光,经600 ℃烧结处理后形成厚度约1 μm的密封膜。评测结果表明,其密封性能良好。. 多孔镍比表面积大,暴露于大气后,容易吸附大量气体,影响实际使用效果。本项目针对多孔镍材料的这一问题,开展了充分的吸放气实验与理论研究。结果表明,暴露于大气的多孔镍材料,在真空条件下放气成分主要是H2O、H2、CO和CO2,其中H2O占总量的95%。经长时间(11小时)高温真空烘烤后,主要放气成分为H2O和CO2(约1:1)。实验还测量了常温下(24 ℃)水在多孔镍表面的吸附等温线,测试压强P范围为1.59 Pa至饱和蒸汽压Ps(2985 Pa)。实验结果表明:(1)在0.04 ≤ ψ ≤ 0.40 (ψ = P/Ps)范围内,实验数据与BET等温线相符较好;(2)在范围0.15 ≤ ψ ≤ 0.95内,实验数据与Redhead的经验等温线相符较好。
{{i.achievement_title}}
数据更新时间:2023-05-31
针灸治疗胃食管反流病的研究进展
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
面向云工作流安全的任务调度方法
高压工况对天然气滤芯性能影响的实验研究
中外学术论文与期刊的宏观差距分析及改进建议
MEMS真空封装内部放气失效机理与加速寿命模型研究
镍锌铁氧体原位包覆MXenes复合材料的制备及吸波机理研究
极小真空分压力校准方法及机理研究
极小尺寸纳米晶镍和镍铼合金的制备及力学性能研究