Developing energy-saving and highly efficient wastewater treatment technique is significant to mitigate water and energy resource shortage. Microbial electrolysis cell, as a cutting-edge biotechnology, can be served for simultaneous wastewater treatment and hydrogen production, which provide feasibility for realizing sustainable wastewater treatment and reutilization. The engineering and scientific issues, such as effective hydrogen separation, improving proton transfer, reducing inner resistance and improving effluent quality, are still need to be solved for MEC advancement. In this proposal, a novel separator electrode assembly membrane bioelectrochemical reactor (SEA-MBER) will be designed based on the merits of MEC and membrane bioreactor. The wastewater treatment and hydrogen production processes and the membrane fouling mechanisms of SEA-MBER will be investigated. The operation of SEA-MBER will be evaluated and optimized through the investigation of pollutant removal rate, membrane flux, current density, hydrogen production rate, columbic efficiency, net energy recovery. The effects of separators and solutions with different properties on the inner resistance and proton transfer of SEA-MBER will be investigated by using electrochemical approaches. The hydrodynamics model of the reactor will be simulated and its relationship to the performance of SEA-MBER will be analyzed. The constituent of extracellular polymeric substances (EPS), the microbial community structure, the abundance and distribution of gene-specific microbe in fouling layers will be systematically characterized with electron microscopy, confocal laser scanning microscopy and high-throughput sequencing based molecular techniques. The fouling mechanisms of membrane in SEA-BEMR will be elucidated from microbial aspects and the membrane fouling control strategy will be proposed. This study provides the theoretical basis for realizing the real application of MEC in wastewater treatment process.
微生物电解池(MEC)作为新兴生物技术,可同步废水处理制氢,为实现可持续废水处理与资源化提供可行性。但有效氢分离、提高传质、降低内阻和提升处理水质是MEC亟待解决的问题,本研究拟结合MEC与MBR的优势,构建新型隔膜电极-生物电化学反应器(SEA-MBER),并围绕其水处理和产氢效能影响因素及膜污染机制开展研究。通过考察污染物去除、膜通量、电流密度、产氢速率、库伦与净能量效率等,优化SEA-MBER水处理和产氢效能;利用电化学、材料物理化学研究隔膜、溶液对SEA-MBER的内阻及传质影响机制;利用流体力学模拟分析SEA-MBER水力特性与反应器效率关系;利用显微技术、高通量测序和生物信息学研究膜污染泥层中EPS组成、微生物种群结构、特异性微生物丰度与分布,从生物学角度阐明SEA-MBER新型膜污染机制,提出控制策略。本研究为实现MEC在废水资源化中应用提供重要的理论基础。
开发高效低能耗废水处理技术对缓解水资源和能源短缺极为重要。微生物电解池(MEC)可同步废水处理制氢,为实现可持续废水处理与资源化提供可行性。针对有效氢分离、提高质子传输、降低内阻和提升处理水质是MEC亟待解决的问题,本研究引入亲水性多孔隔膜于MEC,通过考察有机物去除率、膜通量(恒通量下的跨膜压力)、电流密度、产氢速率、库伦效率、能量效率,评价与优化MEC废水处理与产氢功效;利用电化学分析不同隔膜类型对MEC中的内阻影响(包括生物膜阳极电阻、隔膜电阻、溶液电阻等),解析MEC的质子传输机制,提出有效的内阻调控策略;分析MEC中阳极生物膜以及膜污染泥层中微生物种群结构及差异,从生物学角度阐明微生物种群及生理生态特性所产生的膜污染特征,揭示MEC膜污染机制,并提出膜污染控制策略。本研究为MEC与多孔膜结合在水处理应用中可持续性与有效资源回收提供重要的应用与理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
光催化处理难降解有机污染物和同步光催化分解水产氢的机理研究
正渗透膜-生物反应器支撑层污染机制研究
渗透膜-生物反应器生物污染层形成机制的解析研究
膜生物反应器膜污染机制分形解析及优化控制研究