With the acceleration of urbanization and the overall speed of China's railroad, how to improve the operation safety and reduce high-speed train accident loss, realize modern vehicles people-oriented design ideas, minimize drivers and passengers in the accident casualties has become one hot topic of railway vehicles research..How to ensure the safety of the body structure has also become a difficult problem. Anti-crashworthiness analysis of absorbing structure and material is brought forward here. A methodology of global sensitivity analysis(GSA) is proposed based on response surface method and Sobol method to evaluate the contribution of design parameters for vehicle nonlinear crash problem, and anti-crashworthiness analysis of the integrated design of structure and material of absorbing parts are also studied. Our aim is to give some good ideas for the design of the absorbing structure. The works consist of the following four parts: crash numerical simulation of high-speed train; anti-crashworthiness of absorbing structure/material; A methodology of global sensitivity analysis of anti-crashworthiness parameters; the integrated design of structure and material. .The large deformation crash Software PAM-CRASH is applied to do the numerical simulation and the optimization is carried on the basis of the Science and engineering computation software integration platform SIPESC, which is developed by the State Key Laboratory of structural analysis for industrial equipment of Dalian University of Technology. On the background of the rapid developing of China's railroad, Through crash simulation and optimization, the project study the problem of train safety and hope to give theoretical basis and advise to the factory production department.
随着我国铁路的全面提速,如何提高高速列车运行安全性,实现现代车辆以人为本的设计思想,最大限度减少司机和旅客在事故中的伤亡,成为轨道车辆研发的热点课题之一。如何保证车身结构安全性已成为设计者面临的难题,项目正是为解决此难题,开展吸能材料和结构的耐撞性分析,进行列车吸能结构耐撞性设计参数的全局灵敏度分析、开展吸能材料/结构一体化的耐撞性研究,希望能为列车吸能结构的设计做有益的探索。由四部分内容组成:高速列车碰撞数值仿真;吸能结构/材料的抗撞性设计;列车吸能结构的耐撞性参数的全局灵敏度分析方法研究;列车吸能结构的"结构-材料一体化"抗撞性设计。数值模拟基于大变形碰撞软件PAM-CRASH进行,优化基于大连理工大学自主研发的工程与科学计算软件集成平台SiPESC进行。项目研究铁路安全性问题,通过碰撞模拟和优化,能提炼出一种对吸能结构优化的有效的方法,用力学的方法和理论为吸能结构的设计提供依据。
随着我国铁路的全面提速,如何提高高速列车运行安全性,实现现代车辆以人为本的设计思想,最大限度减少司机和旅客在事故中的伤亡,成为轨道车辆研发的热点课题之一。如何保证车身结构安全性已成为设计者面临的难题,项目正是为解决此难题,开展吸能材料和结构的耐撞性分析,进行列车吸能结构耐撞性设计参数的全局灵敏度分析、开展吸能材料/结构一体化的耐撞性研究,希望能为列车吸能结构的设计做有益的探索。由下面五部分内容组成:高速列车碰撞数值仿真;吸能结构/材料的抗撞性设计;列车吸能结构的耐撞性参数的全局灵敏度分析方法研究;列车吸能结构的“结构-材料一体化”的抗撞性设计;吸能结构优化后的数值模拟。数值模拟基于大变形碰撞软件PAM-CRASH进行,优化基于大连理工大学工业装备重点实验室自主研发的工程与科学计算软件集成平台SiPESC进行。本项目以国内铁路大发展为背景,研究铁路安全性问题,希望研究成果为实际提供理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
玉米叶向值的全基因组关联分析
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
监管的非对称性、盈余管理模式选择与证监会执法效率?
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
吸能导向抗撞结构的主从关联耐撞性拓扑优化方法及概念设计
周期性复合材料的元胞结构和材料参数的抗撞性优化设计研究
梯度泡沫金属填充管的耐撞性和吸能模块设计
轨道列车分布式吸能系统的行为和优化设计方法研究