The miniaturization and integration of all optical fiber photonics devices is the critical technology of high speed optical communication system and high speed information processing system. Microstructured optical fibers have flexible controllability of structural and optical properties and the integration with functional materials, which break through the limitations of traditional optical fibers as optical information transmission devices. It plays an active role in promoting the development of photonics devices. Hollow-core microstructured optical fibers also can provide a closed place for high efficiency overlap between light and material, which enables efficient interaction of them and provides a flexible new platform for interdisciplinary applications based on light and various physical phenomena such as photothermal/acoustic, Raman scattering. It provides a new opportunity for the development of high-performance, miniaturized, and integrated all-fiber devices. Combined hollow-core microstructured optical fibers with nano-magnetic fluid functional materials, the purpose of the project is to construct a composite microstructured optical fiber unit with an optical channel and a material channel. It will also analyze the photothermal effect and dynamic process associated with the interaction between light and magnetic fluid. It will reveal the physical mechanism, researches micro-structured fiber optic device integration as well as thermal effect enhancement and the key technologies of detection to achieve high-performance, integrated fiber optic photonic devices. Further study of the interaction and laws between microscale light and matter can expand the research field. It is of great significance for the development of microstructured fiber technology and the construction of new devices.
全光纤光电子器件的微型化与集成化是高速光通信系统、高速信息处理系统等应用方向的核心技术。微结构光纤突破了传统光纤作为光信息传输器件的功能局限性,在结构和光学特性方面灵活可控且易于与功能材料集成,对光电子器件的发展起了积极的推动作用。空芯微结构光纤不仅具有此特性,尤其是其纤芯可提供光与物质充分重叠的密闭场所,实现两者的高效相互作用,能够大幅度提高其中光热/声、拉曼散射等物理效应的产生效率,为该领域关键光纤器件的发展提供了新的机遇。本项目结合空芯微结构光纤和纳米磁流体,在纤芯构建具有光学通道与物质通道的复合微结构光纤单元,揭示光和磁流体相互作用伴生的光热效应及动态过程的物理机理,解决光纤器件集成中光热效应高效激发的关键技术问题,实现高性能、集成化的光纤器件。在此基础上,深入研究微尺度空间光与物质的相互作用及规律,对微结构光纤技术的发展与新器件的构造具有重要的意义。
全光纤光电子器件的微型化与集成化是高速光通信系统、高速信息处理系统等应用方向的核心技术。微结构光纤突破了传统光纤作为光信息传输器件的功能局限性,在结构和光学特性方面灵活可控且易于与功能材料集成,对光电子器件的发展起了积极的推动作用。空芯微结构光纤不仅具有此特性,尤其是其纤芯可提供光与物质充分重叠的密闭场所,实现两者的高效相互作用,能够大幅度提高其中光热/声、拉曼散射等物理效应的产生效率,为该领域关键光纤器件的发展提供了新的机遇。.本项目结合空芯微结构光纤和纳米磁流体,利用封堵包层孔和负压原理在纤芯构建具有光学通道与物质通道的复合微结构光纤单元,弄清了微结构光纤中纳米磁流体光热效应功能器件的集成机理,掌握了微结构光纤复合通道微单元的构建方法以及空芯微结构光纤中光热效应的探测技术,从光波导结构和纳米功能材料本身对光热效应的增强技术进行了研究,获得了高灵敏度的光纤磁场传感器以及基于微光纤的调控器件等光纤光电子器件。利用磁流体的光热效应能有效的提升探测精确度,可为磁场探测提供新的解决方案和思路,在智能电网维护和发展领域内具有潜在的应用价值。拓展研究了基于新型纳米功能材料和新光纤结构的光子器件,基于二者优势,有望突破传统光纤器件在尺寸、工作性能等方面的限制,为高性能、多功能集成的器件发展提供创新空间,对微结构光纤技术的发展与新器件的构造具有重要的意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
监管的非对称性、盈余管理模式选择与证监会执法效率?
特斯拉涡轮机运行性能研究综述
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
中国参与全球价值链的环境效应分析
基于特种空芯光子晶体光纤的光纤光栅理论及相应器件研究
基于空芯微结构光纤的光流谐振耦合增强机理与新型生化物质感测技术研究
中红外光纤集成器件的关键技术研究及其应用
微结构光纤制备与新型器件集成研究