Flapping-wing micro aerial vehicles designed to imitate insects have attracted the attention of aeronauts because of their advantages such as high speed, long range and hoverability. Accurate measurement of the motion and deformation of dragonfly wing structure is of great significance for exploring dragonfly flight control, dynamic stability and high lift mechanism, and is also the basis for further design of high-performance flapping-wing micro-aircraft. Because of the very thin (1.58-4.08µm) dragonfly's wing membrane, the crisscrossed and wrinkled veins, this project intends to use the digital image correlation (DIC) without additional speckles to measure the dynamic configuration of the extremely thin wings, and to conduct an experimental study on the dynamics of the tethered flying dragonfly's wings. A non-contact, multi-view dynamic three-dimensional deformation measurement system consisting of three sets of high-resolution industrial cameras and red light sources was built to measure large-scale wing flapping. The time series images of tethered flying dragonflies in the flight test box were collected synchronously. Based on the shape context point set registration technology and stereo vision principle, the three-dimensional displacement field distribution on the whole surface of any instantaneous front and rear wing is calculated. The full surface motion and deformation of four dragonfly wings in multiple flapping cycles are analyzed, and the dynamic experimental law of dragonfly folded wings is revealed. This project will provide reliable experimental analysis means for the in-depth study of insect flight mechanism.
仿昆虫设计的扑翼型微型飞行器因其速度快、航程远、可悬停等优势而受到航空学家的重视。精确测量蜻蜓翅膀结构的运动和变形等动力学特性对探索蜻蜓飞行控制、动稳定性和高升力机制具有重要意义,也是进一步设计高性能微型扑翼飞行器的基础。由于蜻蜓翅膜极薄(1.58-4.08µm)、翅脉纵横交错且皱褶丰富,本项目拟采用无附加散斑的多相机数字图像相关方法,测量极薄翅翼的动态构形,对系留飞行蜻蜓翅膀的动力学规律进行实验研究。为测量较大幅度的翅膀拍动,搭建由三组高分辨率工业相机及红光光源构成的非接触、多方位动态三维变形全场测量系统,同步采集飞行试验箱中系留飞行蜻蜓的时间序列图像。利用基于翅膀本征的形状上下文点集配准技术和立体视觉原理,计算任一瞬时前后翅翼的全表面三维位移场分布。分析蜻蜓多个拍动周期四只翅翼的全表面运动和变形,揭示蜻蜓皱褶翅膀的动力学实验规律。该项目将为昆虫飞行机理的深入研究提供可靠的实验分析手段。
仿昆虫设计的扑翼型微型飞行器因其速度快、航程远、可悬停等优势而受到航空学家的重视。精确测量蜻蜓翅膀结构的运动和变形等动力学特性对探索蜻蜓飞行控制、动稳定性和高升力机制具有重要意义,也是进一步设计高性能微型扑翼飞行器的基础。本研究针对蜻蜓翅膜结构的极薄特征和较大幅度的翅膀拍动测量需求,搭建了一套非接触、多方位动态三维变形全场测量系统,包括发展了基于翅膀本征和多光谱散斑的多表面测量方法, 提出基于荧光偏振分像的多表面三维变形动态测量的紧凑型测量装置与测量方法,进行多翅翼结构的三维全场变形测量;发展了多尺度数字散斑的优化制作方法,提高被测物体在多方位不同测量视场中的分辨率;发展了基于多光谱散斑和Snell定律的折射误差校正方法,提出透明翅翼厚度测量的非接触方法。通过实验和有限元仿真对蜻蜓翅膀的动力学特性、双扑翼飞行器的扑动规律进行研究,为探索更多昆虫的动力学特性和科学设计扑翼飞行器提供可靠的实验方法和科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
基于SSVEP 直接脑控机器人方向和速度研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
气载放射性碘采样测量方法研究进展
基于全模式全聚焦方法的裂纹超声成像定量检测
极薄硅钢带剪切变形条件下的三次再结晶行为
梯度微纳米金属极薄带剪/压复合变形下的强韧机理及尺寸效应
受蜻蜓视觉机制启发的观测目标位移测量方法及应用
复合轧制制备纳米晶铜极薄带尺寸效应研究