The high frequency band (millimeter wave) communication is an effective way to pursue the high-speed transmission of mass data in the future mobile communication. The characteristics of high frequency band entailing strong propagation loss and quasi-optimal properties make the mechanism of its interaction with construction materials very complicated. The electromagnetic characteristics of construction materials and three-dimensional (3D) diffuse scattering propagation could affect the accuracy of analysis and prediction on high frequency channel propagation. The aim of this project is to establish a high performance indoor millimeter wave (mm-wave) channel propagation model by focusing on the dielectric properties and reflection, penetration and diffuse scattering characteristics of construction materials. The research involves establishing the electromagnetic characteristic database of typical construction materials in 6-75GHz band and clarifying the rules of variation of each parameter. Using the measurement of 3D diffuse scattering pattern, the parameter estimation method based on sub-path generation mechanism is proposed and the optimal 3D diffuse scattering model is further determined, revealing the statistical characteristics of 3D diffuse scattering in high frequency band. By integrating material electromagnetic characteristic database together with the diffuse scattering model and parameters, the accuracy of 3D ray tracing model on analysis and prediction of indoor mm-wave propagation could be improved, a high performance indoor mm-wave channel propagation model is also obtained. This project could fill the absence of the electromagnetic characteristic measurement data of construction materials in high frequency band, enrich the propagation theory of mm-wave channel, and support the high frequency channel models as well as the indoor mm-wave communication network, laying a foundation for the establishment of indoor high-speed Internet of things and the development of intelligent buildings.
高频段(毫米波)是解决未来移动通信海量数据高速传输的有效途径。高频段具有的大传播损耗、准光学特性等特征使其与建筑物的作用机理非常复杂,建筑材料电磁特性和3D漫散射传播将影响高频段信道传播分析和预测的准确性。本项目围绕材料的介电特性和反射、透射、漫散射特性,旨在建立高性能室内毫米波信道传播模型。研究内容涉及构建6-75GHz频段典型建筑材料的电磁特性数据库,阐明各参数的变化规律;测量3D漫散射方向图,提出基于子路径生成机制的参数估计方法并确定最佳的3D漫散射模型,揭示高频段3D漫散射的统计特性;融入材料电磁特性数据库和漫散射模型及参数,提升3D射线追踪模型分析和预测室内毫米波传播的准确性,获得高性能的室内毫米波信道传播模型。本项目能填补高频段建筑材料电磁特性测量数据的空白,丰富毫米波信道的传播理论,支撑业界高频段信道建模与室内毫米波通信组网,为建立室内高速物联网和开发智能楼宇奠定基础。
高频段是解决未来移动通信海量数据高速传输的有效途径,毫米波能够提供连续大带宽满足高数据传输,实现天线小型化而成为5G和B5G热点研究频段。室内复杂传播环境毫米波信道确定性建模性能强烈依赖于精细的传播环境信息和材料电磁特性参数,基于射线追踪的毫米波信道模型准确性、有效性和普适性有待提升。本项目以揭示室内毫米波信道特性构建高性能信道模型为目标,围绕毫米波边界波动传播、粗糙面漫散射传播和毫米波信道开展研究。主要工作:1. 结合宽频段毫米波频段下的典型建筑材料传播参数测量与波动建模,研究单层各向同性和多层各向异性建筑材料的电波传播边界理论,分析反射、透射在不同频段、入射角和极化下传播特性,研究高精度复介电常数反演算法。2. 研究粗糙面漫散射传播规律,利用仿真和实测数据提取并构建漫散射传播模型,利用大量测量数据校准射线追踪仿真性能。3. 开展室内热点场景毫米波信道测量,研究高精度高分辨率的时延角度域联合参数提取算法。本项目对构建高性能的室内毫米波信道模型具有重要的理论与实践意义,为5G毫米波通信、网络规划与优化提供理论与基础支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
多空间交互协同过滤推荐
卡斯特“网络社会理论”对于人文地理学的知识贡献-基于中外引文内容的分析与对比
毫米波室内传播特性的研究
多点协作模式下参数化电磁散射簇的室内信道数值建模
室内高密集微功耗传感环境中传播特性与信道特征研究
植被电磁传播及散射特性的机器学习