The boron powder in boron-containing explosives has a higher combustion heat, but has poor properties of ignition and combustion. Improving the combustion properties of boron powders has an important significance to enhance the energy output and damage effect of boron-containing explosives. In this project, the metal hydrogen storage materials will be added to improve the combustion properties of boron powders. Metal hydrogen storage materials exist hydrogen desorption reaction when compressed by shock waves, the water vapor oxidized from hydrogen and the high combustion heat released from metal hydrogen storage materials could boost the vaporization of the oxide film surrounding boron particle. Thus, a new HMX-based explosive containing metal hydrogen storage material, boron, ammonium perchlorate, binder and phlegmatizer will be developed. Laser-driven shock waves and nanosecond time-resolved Raman spectroscopy will be used to study the initiating reaction mechanism of explosives at molecular level. Displacement interferometer system for any reflector (DISAR) will be used to analyze the detonation reaction zone structure of explosives. Underwater explosion and enclosed space explosion tests will be used to acquire the energy output structure of explosives. Depending on all above studies, a formulation of boron-contained explosives with high performance of work capability and explosion power will be gained. And the explosion mechanism of explosives will be established at microscale, which will help us to understand the basic chemical problems, such as the reaction sequence and duration in explosion. Finally, the energy output structure of explosives will be got at macroscale, which will provide a theoretical basis for the development of high-performance metalized explosives with high explosion power.
含硼炸药中的硼粉具有较高的热值,但点火和燃烧性能较差,改善硼粉的燃烧性能,对提高炸药的能量输出和毁伤效应具有重要意义。本项目选择金属储氢材料改善硼粉的燃烧性能,金属储氢材料在冲击波加载下存在放氢反应,氢气氧化生成的水蒸气和金属储氢材料的高燃烧热可促进硼颗粒表面氧化膜的脱落。据此设计和制备以HMX为基,含有金属储氢材料、硼、高氯酸铵、粘结剂和钝感剂的含硼炸药。采用激光加载冲击波和纳秒时间分辨拉曼光谱技术在分子水平上探究炸药的起爆反应历程;使用任意反射面位移干涉测速系统(DISAR)解析炸药的爆轰反应区结构;利用水下爆炸和密闭空间爆炸试验获得炸药的能量输出结构。通过以上研究,获得作功能力和爆炸威力较好的含硼炸药配方;在微观尺度上建立炸药的爆炸反应机理,深入理解爆炸反应的顺序和时间等基本化学问题;并在宏观尺度上获得其能量输出结构,为研制性能优良的高威力金属化炸药积累技术基础。
含硼炸药作为温压炸药的候选配方,其含有的硼粉具有较高的热值,但点火和燃烧性能较差。本项目提出使用金属储氢材料促进硼粉的点火和燃烧性能,设计了一种以黑索今为基的含有铝、硼和氢化镁的金属化炸药,在此基础上对其爆炸反应机理和能量输出结构进行了研究。使用激光冲击加载和发射光谱技术对其起爆反应历程进行了研究,使用界面粒子速度和阻抗匹配对其爆轰反应区结构进行了研究,得到了其爆炸反应机理。通过爆热、空中爆炸、水下爆炸和圆筒实验对其能量输出结构进行了研究。通过与相似配方的含铝炸药进行对比,添加储氢材料的含硼炸药点火性能相当,爆轰反应区参数相当,爆热值略有增加,圆筒加速能量稍弱,但体现出了更强的后燃反应特征。本项目的研究为温压炸药提供了一种新的配方选择,对爆炸反应机理和能量输出结构的研究有利于深入理解金属化炸药的能量释放特征。
{{i.achievement_title}}
数据更新时间:2023-05-31
EBPR工艺运行效果的主要影响因素及研究现状
妊娠对雌性大鼠冷防御性肩胛间区棕色脂肪组织产热的影响及其机制
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
基于被动变阻尼装置高层结构风振控制效果对比分析
神经退行性疾病发病机制的研究进展
硼铝金属化炸药的反应区结构和能量输出特性研究
非对称结构约束条件下炸药爆炸能量输出规律研究
基于纳米结构PTFE@Al金属化炸药的反应区结构与能量输出特性
新型金属储氢材料及其储氢机理