Graphdiyne of sp- and sp2-hybridized carbon atoms, is new carbon material with independent intellectual property rights in China. Due to the unique physicochemical properties which break through traditional carbon materials, graphdiyne has the potential to be the next generation of key material for energy field development. In this project, the high-quality, layer-adjustable graphdiyne aggregation structures will be fabricated, the surface modification and chemical doping methods will be used to adjust the electrical properties and electronic structure of graphdiyne, and eventually to achieve effective regulation of perovskite exciton separation and ion migration behavior. Specially, the effect of surface modification groups on the energy band of graphdiyne will be systematically explored. By tuning the distribution of graphdiyne, graphdiyne/perovskite planar heterojunction, three-dimensional heterojunction and gradient heterojunction can be constructed. The change trend of defect concentration and surface work function of perovskite can be deeply studied, the effect of graphdiyne on the electron extraction ability will be clarified, and the regulation mechanism of graphdiyne on the separation behavior of photo-excitons will be revealed. Additionally, the regulation rules of doping site and concentration on the content of acetylene bond and the structure of three-dimensional pore can be further explored, the bonding mechanism of acetylene bond and ions will be systematically investigated, the binding effect of three-dimensional pore structure on ions will be discussed, and the collaborative anchoring mechanism of graphdiyne on migrating ions will be clarified. The new strategy will be developed to improve the efficiency of exciton separation and inhibit ion migration by using graphdiyne, which can provide experimental and theoretical basis for fully utilizing the characteristics of graphdiyne and improving the performance of perovskite devices.
sp-sp2杂化石墨炔是具有我国自主知识产权的全新碳材料,其突破传统碳材料的独特理化性能使其有望成为颠覆能源领域的下一代关键材料。本项目拟构筑高质量、层数可调的石墨炔聚集态结构,采用表面修饰与化学掺杂的手段,调节石墨炔电学性能与电子结构,实现对钙钛矿激子分离与离子迁移行为的有效调控。系统研究表面修饰基团对石墨炔能带的影响,调节石墨炔分布位置,构筑石墨炔/钙钛矿平面异质结、三维异质结、梯度异质结,探究钙钛矿缺陷浓度与表面功函的变化趋势,阐明石墨炔对电子抽取性能的作用效果,揭示石墨炔对光生激子分离行为的调控机制。深入探究掺杂位点、浓度对炔键含量与三维孔道结构的调控规律,明确炔键与离子的键合机理,探讨三维孔道结构对离子的束缚作用,阐明石墨炔对迁移离子的协同锚定机理。发展利用石墨炔提高激子分离效率,抑制离子迁移的新方法,为充分发挥石墨炔特性、提升钙钛矿器件性能提供实验和理论依据。
sp-sp2杂化石墨炔新型碳材料在光电能量转换性能调控方面表现出巨大的潜力。本项目聚焦石墨炔聚集态结构控制制备与功能化,针对石墨炔/钙钛矿异质结构设计以及功能化石墨炔对激子、离子输运的调控规律等关键科学问题展开深入探索。通过系统研究,阐明了石墨炔聚集态的自组装过程与形成机理,揭示了石墨炔调控激子分离行为的作用机制,探究了石墨炔化学键与三维孔道结构对迁移离子的协同锚定效果,有效提高了光生激子分离效率,抑制钙钛矿离子迁移。取得的重要成果概述如下。.(1)通过改变石墨炔单体交联耦合反应路径,可控组装并调控石墨炔聚集态结构,获得了具有不同微纳结构的石墨炔粉末、薄膜、纳米颗粒以及纳米墙阵列,实现了石墨炔功能化吡啶氮掺杂,阐明了石墨炔聚集态结构与其理化性能之间的构效关系。.(2)针对钙钛矿复杂缺陷耦合态调控关键瓶颈,发展普适性A位占位阳离子遏制晶体缺陷的“A位管理”新方法,解决了双极性缺陷协同钝化难题,推动高结晶度钙钛矿新型合成路线设计及材料体系的发展。.(3)针对钙钛矿界面电荷提取效率差异化挑战,提出利用石墨炔构建钙钛矿生长与功能服役界面新思路,设计构筑石墨炔/钙钛矿平面异质结,解决界面失配瓶颈问题,电池效率提升10%,揭示石墨炔在钙钛矿太阳能电池中的应用机制,充分展示了石墨炔材料在领域光伏发电领域的重要应用潜力与前景。.(4)针对钙钛矿晶界缺陷诱发的离子迁移问题,通过石墨炔/钙钛矿三维异质结构设计,充分发挥功能化石墨炔独特的分子构型与电学特性,大幅降低了钙钛矿晶体缺陷,器件效率提高14%;阻碍了晶界离子迁移,碘离子扩散势垒提高了1倍(~0.29 eV),获得了高效及相稳定的钙钛矿材料与器件。.本项目在过去3年的实施期间,在Adv. Mater.等国内外高水平期刊发表学术论文8篇,获得授权专利3件。完成了石墨炔聚集态结构控制制备与钙钛矿激子、离子行为调控研究任务,所取得的成果,对为充分发挥石墨炔特性提升钙钛矿器件性能提供了重要指导和借鉴。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
结直肠癌肝转移患者预后影响
有机-无机钙钛矿材料中激子行为及相关光电性质研究
多重激子效应钙钛矿结构CsSnI量子点的设计与性能调控
钙钛矿有机-无机杂化卤化铅微结构相关的激子和缺陷态物理问题研究
有机无机卤化物钙钛矿的奇异材料特性:离子行为和载流子空间分离,及其对钙钛矿光伏器件的影响