It is widely accepted that flexible touch sensors (FTSs) will be very important in the future for a variety of applications such as wearable devices. However, the current FTSs are restricted by the external power supply requirement as well as the functional limits. Combining passive touch sensitivity and multi-functionality in a man-made FTS remains a challenging task. Very recently, we developed a passive pressure/temperature sensor based on flexible chemically converted graphene (CCG) networks. They have value in a certain context but their sensitivity is still limited because of their poor electrical properties, which is due to the existence of a large amount of carrier traps. In this research, we plan to modify the electrical properties of CCG by using fluorocarbon polymers which have high dipole moment. The effects of dipole moment on trap healing will be investigated. The synthesis methods of both fluorocarbon/CCG nanohybrids and hybrid 3D networks will be developed. Through in-situ characterizations on surface and interface properties, microstructures, mechanical and electrical properties of.the hybrids, the effects of dipole moment as well as the mechanisms of fluorocarbon modification on CCG will be understood. Overall, we aim at developing an efficiency method for electrical modification of CCG, mastering the rules of factors influencing the sensitivity of CCG networks, and obtaining a highly stable CCG network-based FTS. The sensitivity of the CCG network-based FTS is expected to be as high as 8 kPa-1 even under a high strain (e.g., curvature radius < 10 mm or tensile strain > 10% in bending or stretching states, respectively). We believe that this research will meet the urgent needs for high-performance FTSs, and may open up new doors for the development of intelligent sensors.
柔性触敏器件目前普遍存在依赖电源、功能单一等缺陷,限制了其在可穿戴设备等领域的应用。近期申请者基于化学转化石墨烯(CCG)导电网络构建了无源压敏/温敏传感器,然而其电学响应性能仍受制于CCG表面存在的大量载流子陷阱。本项目拟研究利用氟碳聚合物的电偶极矩作用修复CCG电学性能的方法,原位考察电学改性的CCG表面性质及其与电学响应性能的关系,研究高分子/石墨烯稳态柔性交联网络的构筑机制,探究其微观结构对力学、触敏响应性能的影响规律。本项目的完成将获得修复CCG电性能的有效方法,建立高灵敏度的柔性触敏导电网络,掌握触敏性能的调控规律,实现石墨烯三维网络在高应变(曲率半径<10 mm或伸长率>10%)下保持高灵敏度(>8 kPa-1)的目标,以满足其在智能传感领域的应用要求。
柔性敏感器件目前普遍存在依赖电源、功能单一等缺陷,限制了其在可穿戴设备等领域的应用。本项目中,本人基于化学转化石墨烯(CCG)导电网络构建了无源压敏/温敏传感器,研究了其电学响应性能与CCG载流子陷阱调控的关系。特别是,本项目研究了利用氟碳聚合物的电偶极矩作用修复CCG电学性能的方法,考察了电学改性的CCG表面性质及其与电学响应性能的关系,研究了高分子/石墨烯稳态柔性交联网络的构筑机制,探究了其微观结构对力学、触敏响应性能的影响规律。通过本项目的实施,获得了一系列包括石墨烯之内的二维纳米材料基有机无机杂化高灵敏度的柔性触敏材料,实现了高的压力传感灵敏度(>8 kPa-1),探索了这些敏感材料在可穿戴应力、光、热传感器件中的应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
基于文献计量学和社会网络分析的国内高血压病中医学术团队研究
组蛋白去乙酰化酶在变应性鼻炎鼻黏膜上皮中的表达研究
贵州织金洞洞穴CO2的来源及其空间分布特征
肺部肿瘤手术患者中肺功能正常吸烟者和慢阻肺患者的小气道上皮间质转化
铁电-石墨烯复合多功能柔性电子皮肤的力敏、温敏传感机理及性能调控
类石墨烯/聚合物柔性传感器的制备与性能研究
石墨烯高频介电行为与调制方法
聚合物功能化氮掺杂石墨烯三维网络结构的研究