Trigonometric generalized B-splines are parametric curves defined on nonpolynomial spaces. By introducing a frequency sequence, trigonometric generalized B-splines unify and extend polynomial B-splines, trigonometric B-splines, and hyperbolic B-splines. Trigonometric generalized B-splines now have been used as a kind of modeling tool in isogeometric analysis . . This project intends to study multi-degree trigonometric generalized B-splines and establish a integral theoretical framework as trigonometric generalized B-splines possess. Compared with trigonometric generalized B-splines, multi-degree trigonometric generalized B-splines have more advantages since they allow various degrees on different knot intervals. This can reduce redundant data and save computation. The biggest difficulty lies in the construction of the basis functions, which should be completely new. . The project consists of three parts. (1) We begin with the construction of multi-degree trigonometric generalized B-spline basis functions which must possess weighting property, total positivity and local support property. Moreover, some important properties will be studied. (2) Based on the above basis functions, the construction of multi-degree trigonometric generalized B-spline curves and surfaces will be studied. Some important algorithms such as subdivision will be discussed. (3) The elevation algorithms of multi-degree trigonometric generalized B-splines will then be studied so that they can be better applied in geometric modeling and isogeometric analysis.
广义三角(Trigonometric Generalized)B样条是定义在混合多项式空间的参数曲线。其特点是通过引入频度序列,兼容多项式B样条、代数三角B样条、代数双曲B样条。作为建模工具,广义三角B样条已应用于等几何分析等CAGD热点领域。.本项目拟研究变次数广义三角B样条,为其建立与广义三角B样条相似的理论框架。与广义三角B样条相比,它的优点是不需用统一的高次混合多项式表示低次混合多项式部分,可以减少冗余数据,节省计算量。其困难是基函数的构造不能用原有方法。.该项目分为三部分:(1) 构造一组具有权性、全正性、局部支撑性并兼容广义三角B样条基的变次数广义三角B样条基函数,研究其重要性质;(2) 研究以变次数广义三角B样条基表示的变次数广义三角B样条曲线曲面的构造方法,并研究其细分等重要算法;(3) 研究变次数广义三角B样条升阶算法等,为其应用于几何造型和等几何分析提供理论基础。
混合多项式空间样条曲线已成为几何建模、信号处理、等几何分析的一个新工具。广义三角B样条,是一种定义在混合多项式空间的参数曲线。通过引入频度序列,广义三角B样条将多项式样条、代数三角样条、代数双曲样条统一起来。本项目拟研究变次数广义三角B样条,它允许次数多样性,即在不同节点区间允许用不同次数、不同类型的样条基函数。项目围绕次数可变的非均匀代数三角B样条展开研究。项目构造了满足正性、局部支撑性、规范性等性质的变次数代数三角B样条基函数,允许其在不同区间次数不同,研究了基函数的基本性质和离散性质等,并基于基函数构造了变次数代数三角B样条,研究了其细分性质等,有望应用于等几何分析。.项目研究了在一个由B样条基函数张成的子空间的并集中做散乱点拟合的问题。为了提高效率,逼近曲面在每个子空间均得到一个稀疏表示,散乱点逼近问题就可以利用求解稀疏优化来解决。通过引进分片稀疏概念,提出了分片近端梯度下降法,并基于微分方程对分片算法进行了分析,建立分片算法的收敛阶。算法收敛且快,可应用于信号处理及计算几何相关问题。项目还研究了三次均匀B样条函数的变分问题。对于三次均匀B样条函数,在系数模确定的条件下,项目研究了样条函数模的取值范围这一理论问题。通过构造一个在已知节点分割上具有正负相间、振幅相同性质的切比雪夫多项式的三次均匀B样条函数推广——类切比雪夫多项式的三次样条函数,证明了在系数模确定的条件下,类切比雪夫多项式的三次样条函数就是具有最小函数模的B样条函数,并求出了三次均匀B样条函数模的极值,这一结果有望应用于逼近、插值等问题中。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects
气载放射性碘采样测量方法研究进展
五轴联动机床几何误差一次装卡测量方法
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
CAD中次数任意可变的拟B样条曲面的理论及应用研究
CAD中变次数B样条升阶性质及应用研究
CAD中变次数B样条的性质及其应用的研究
CAD中点集B样条的理论及应用研究