As a new carbon allotrope, Graphdiyne is a two-dimensional planar material with hexagonal carbon rings connected by diine linkages, which make graphdiyne as a three-dimensional (3D) porous material. The unique 3D porous structure, good chemical stability and conductivity of graphdiyne may pave a new route for developing a technological breakthrough in Li-ion based energy storage devices. Considering the special sp-sp2 hybrid configuration of graphdiyne, combined with electrochemical performance measurement, some new ideas and methods generated from the molecular structure and electrochemical test of graphdiyne materials are presented here, including the controllable preparation and modification of graphdiyne, designing their topology structure for facilitating the lithium storage, studying the effect of their different defects, heteroatom doping, nano morphology on the lithium storage. A variety of advanced in-situ study technologies will be employed to give a deep understanding on the key science and difficulties of lithium storage behavior in graphdiyne. The electrochemical reaction occurred on the surface and interface of graphdiyne will be studied. The electrode kinetics process and diffusion behavior of lithium ion in the graphdiyne interfaces will be elucidated. Direct observation experiment of graphdiyne lithium storage will be executed, to confirm the kinetic and thermodynamic processes of graphdiyne lithium storage behavior. The micro-meso-macro multiscale interpretation will be deduced to describe the relationship between the graphdiyne structure and its lithium storage behavior. Finally the lithium storage behavior of graphdiyne will be clearly understood, which can be used to guide the development of electrode materials with both high energy density and high power density. A basic study method on lithium storage process of graphdiyne based three dimensional porous layered materials will be generated, to drive the development of new layered lithium storage materials, which can be used in high efficient energy storage devices.
新型碳材料石墨炔兼有二维平面材料和三维多孔材料的特点,同时具备良好的化学稳定性和导电能力,有可能实现储锂材料的新突破。本项目利用石墨炔sp-sp2碳杂化的特点,从石墨炔材料的空间、电子结构和电化学测试上提出一些新的研究思想和方法,包括石墨炔的可控制备、修饰及其拓扑结构储锂,研究石墨炔不同缺陷、异原子掺杂、纳米形貌对其储锂的影响。结合电化学性能测试,将采用微电极-电化学-拉曼联用等原位研究技术,直接观测石墨炔储锂的具体行为状态,研究石墨炔作为电极其表界面发生的电化学反应,揭示锂离子在各界面的扩散行为和电极动力学过程,对石墨炔储锂的动力学和热力学过程从实验上进行佐证,并结合理论计算给出深层次的理解。从微观-介观-宏观多尺度阐释石墨炔构型变化与储锂行为的关系,为发展兼具高能量密度和高功率度的石墨炔电极材料提供指导。并以石墨炔的特殊结构为模型,发展三维层状多孔材料储锂行为研究的基本方法。
本项目按照申报书提出的研究计划执行,深入研究了石墨炔的合成方法及其在储能材料领域的应用,创新性的设计合成了不同原子取代的石墨炔基碳材料。这种具有特定功能官能团的新型碳材料在储能领域尤其是锂离子电池应用中展现了优异的性能,为高效锂离子电池材料的可控设计提供了新的思路和开拓性的研究基础;为更好的将材料的合成及其性能相匹配,本项目坚持将理论计算与实验测试相结合,设计具有独特电子结构和特定锂离子存储和传输孔道的石墨炔材料,展现出了优异的锂离子电池性能;同时项目也从反应机理的角度上对材料引入的掺杂原子给予了充分的分析和表征,很好的诠释了材料的设计合成思路。项目顺利完成了申请和计划书中提出的各项研究目标,取得重要的基础研究成果,并在论文发表、专利申请以及人才培养方面获得较大的进展。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
论大数据环境对情报学发展的影响
天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析
宽弦高速跨音风扇颤振特性研究
面向工件表面缺陷的无监督域适应方法
基于石墨的电化学剥离制备薄片碳材料及其储锂性能研究
功能化空心碳-硫正极材料的可控制备与储锂性能研究
微乳液可控制备球形多孔硅/碳复合材料及储锂性能研究
新型多孔碳-二硫化硒纳米复合材料的可控制备与储锂机制