Due to the low recrystallization temperature and low high-temperature strength, molybdenum or conventional molybdenum alloy has been restricted to be used in the areas such as aviation, aerospace and national defense. At present, researchers have made an obvious progress in increasing the recrystallization temperature and improving the high-temperature strength by adding a small amount of dispersive carbide. However, the research that using a high-content of low-density carbide to further increase the high-temperature strength and decrease the density of molybdenum alloy has never been reported. We have found in our prevoius studies that a high-content of TiC plays very good effect in increasing the high-temperature strength of the molybdenum, and the mechanical property at 1000℃ of the strengthened molybdenum alloy has almost no decline comparing with its room-temperature property. At present, however, there is still lack of in-depth research about its high-temperature mechanical behavior and strengthen mechanism.. Based on the existing research foundation, heterogeneous precipitation-hot reduction method will be adopted in this project to prepare composite powder whose component is high-content carbide uniformly coated by molybdenum. After a forming and high-temperature sintering process, this composite powder will be prepared into high-content-carbide enhanced molybdenum alloys. The influence law of carbide on mechanical properties and microstructure of the alloy will be studied in depth. It will be focus on the mechanical behaviors of the carbide-enhanced molybdenum alloys at different temperatures, and the effect of temperature on the strength, elongation of the alloys will be mastered, then a database of alloy component-temperature-performance will be established. Through a deep observation into the fractograph and microstructure evolution, the distribution state of carbide phase and the influence of the distribution state of carbide phase on the dislocation distribution and the two-phase interface will be revealed, then the strengthen mechanism can also be verified.
钼或常规钼合金由于再结晶温度低、高温强度下降快等不足已经严重制约了其向航空、航天、国防等领域的进一步扩展应用。目前,采用微量碳化物弥散强化钼在提高合金再结晶温度和高温力学性能上均取得较明显的效果,但对于采用高含量碳化物增强钼来进一步提高材料高温性能的研究还未有报道。我们在前期研究发现采用高含量TiC来增强钼确实可起到很好的高温强化效果,使合金在1000℃的力学性能与室温性能相比几乎无下降,但目前对其高温力学行为和强化机制还缺乏深入研究。.本项目在已有的基础上,采用非均相沉淀-热还原制备Mo均匀包覆高含量TiC的复合粉末,经成形、高温烧结后制备出高含量TiC增强钼合金,深入研究其在不同温度下的力学行为,掌握温度对合金强度、延伸率的影响规律,建立合金成分-温度-性能基础数据库;通过深入观察断口组织、微观结构演变,明确碳化物相的分布状态,以及对位错分布、两相界面的影响规律,探明其强化机制。
钼合金具有熔点高、热膨胀低、力学性能优良等特性,是航空、航天和国防军工领域一种非常重要的高温材料。然而,科学技术的快速发展,纯钼或常规钼合金由于再结晶温度低、高温强度随温度下降快等不足,已不能满足尖端领域的发展需要。针对这一问题,前期设计采用具有熔点高、模量大的TiC增强难熔金属钼,采用非均相沉淀-热还原制备Mo均匀包覆TiC的复合粉末,经模压成形、氢气保护高温烧结制备出高含量TiC增强钼合金,通过对材料的初步性能研究发现,采用高含量TiC增强钼确实可起到很好的高温强化效果,1000℃抗拉强度接近600MPa,显示了非常好的发展潜力。. 为了能够充分挖掘材料性能和使高含量TiC增强钼合金在航空、航天等领域获得工程应用,本项目研究了高含量TiC增强钼合金的成分与性能、组织的对应关系,并重点研究了合金在不同温度下的力学行为、温度对合金的断裂方式和断口微观组织的影响规律,以及碳化物颗粒的分布状态、碳化物颗粒与基体的界面特征等,探明了其强化机理。研究发现,TiC含量对合金的晶粒组织和性能影响都很大,随着TiC含量的增多,合金的晶粒尺寸逐渐减小,但合金的性能呈现先增高后降低的特点。通过深入分析微观组织和第二相颗粒,发现添加的TiC在合金中生成了含Ti、Mo、C、O的复合氧化物颗粒,这些第二相颗粒分布在晶粒内部和晶界之间,对合金起到净化晶界氧、细晶强化和弥散强化效果,从而使合金性能随TiC含量增多先升高,但当TiC含量进一步增加时,生成的第二相颗粒也明显增大、且主要分布在晶界之间,弱化晶界结合强度,从而使合金性能下降,且基本沿晶断裂。通过对合金的高温力学行为研究发现,合金在室温~1200℃范围内强度下降比较小,断口基本呈现沿晶脆性断裂,但当温度进一步提高到1400~1600℃时,合金在完成弹性变形后发生了明显塑性变形,晶粒发生了明显变形,断口呈现韧窝韧性断裂。高含量TiC增强钼合金具有优异的室温、高温力学性能,其强化机理主要为细晶强化和颗粒强化复合作用。. 此外,通过本项目的研究,实现了高含量TiC增强钼合金的高温强韧(1600℃抗拉强度达到250MPa),并且初步建立了材料的力学性能数据库,对其在航空、航天等领域的工程应用意义重大。
{{i.achievement_title}}
数据更新时间:2023-05-31
多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法
非牛顿流体剪切稀化特性的分子动力学模拟
Influence of calcination temperature on the photocatalytic performance of the hierarchical TiO2 pinecone-like structure decorated with CdS nanoparticles
出租车新运营模式下的LED广告精准投放策略
新产品脱销等待时间对顾客抱怨行为的影响:基于有调节的双中介模型
双尺度分布氧化镧颗粒掺杂钼合金的高温力学行为研究
高硅含量高温钛合金粉末热锻制备及硅化物析出状态对力学行为的影响
高熔点强化元素弥散载入对粉末高温合金与单晶高温合金钎焊接头的强化机理研究
镍基单晶高温合金沉淀强化的宏微观力学机制研究