Optofluidic devices are the high-performance biochemical analysis devices which can realize both fluid control device and optical detection. Glass has high transmittance in visible and ultraviolet band, and it also has good chemical stability, which provide promise for high sensitivity and reliability of optofluidic devices. But MEMS and casting technology cannot fabricate 3D glass optofluidic device, it is need to develop new glass optofluidic devices manufacturing method. Femtosecond laser 3D high precision processing advantages make the fabrication of 3D glass optofluidic devices is possible. But the processing mechanism and precision control of the device is still an open question. Based on these, this project put forward by using femtosecond laser induced glass material modification, and caused refractive index modulation or rapid etching microstructure; the goal is using femtosecond laser to realize high performance opto-fluidic detection chip manufacturing. Control the femtosecond laser modification area performance is the core of this project. Clarify the affect of modified area material microstructure on the device optical performance, analysis precision processing mechanism of the modified material area size and precision,research the etching kinetics of modified area, design fiber microfluidics devices, establish the physical model of optofluidic device parameters - material micro-structure - performance of devices, and provide new method of high performance 3D optofluidic devices fabrication.
光流体器件是集流体操控与光学检测功能于一身的高性能集成型生化检测器件。玻璃材料在可见和紫外波段透过率高,且具有良好的化学稳定性,为光流体器件的高灵敏度和高可靠性提供必要保障。但MEMS工艺和浇铸技术不能实现玻璃基三维光流体器件的加工,亟需探索新型制造方法。飞秒激光的三维高精密加工优势为玻璃基三维光流体器件的制造提供可能,但器件的加工机理与精度控制还有待研究。基于此,本项目提出利用飞秒激光诱导玻璃材料改性并实现折射率调制或形成快速腐蚀微结构的加工思路,以实现高性能三维玻璃光流体检测芯片加工为目标,以控制飞秒激光改性区性能为核心,阐明改性区物质微观结构变化对光学性能的影响机制,分析改性区结构尺寸和精度的精确控制加工机理,研究改性区腐蚀动力学过程,并设计新型光纤微流体器件,建立光流体器件工艺参数-微观结构-器件性能的相关模型,为高性能三维光流体器件的制造提供新方法。
人类对生命科学的不断探索为分析科学和技术的发展提供了新的机遇和挑战,光流体器件是实现生物操控与检测的一种高性能集成型功能器件。本项目以飞秒激光为加工手段,在玻璃材料中实现了光流体器件加工。采用双脉冲加工方法控制了飞秒激光改性区性能及其加工精度,研究了改性区物质微观结构变化对其性能的影响机制,提高了加工一致性;研究了脉冲偏振组合和能量比对加工效率的影响规律,发现当首、次脉冲的偏振方向分别为圆偏振和垂直偏振时,蚀刻速率高,且与双脉冲延迟时间无关,当首个脉冲能量较低时可有效降低等离子体屏蔽效应;分析了材料折射率变化、改性区和腐蚀区的结构尺寸和精度精确控制的相关机理。并基于流体力学和有限元仿真,分析了混合效率与扩散系数、表面结构之间的关系,设计了新型微流体器件和机械强度高的光纤微结构。采用复合加工方法提高微通道的烧蚀加工深度,并利用温度后处理方法降低通道表面粗糙度;并在石英材料内部实现低损耗光波导加工。建立了光流体器件工艺参数-微观结构-器件性能的相关模型,并探索了提高飞秒激光加工高性能光流体器件的制造方法和工艺,为光流体器件的制造提供技术储备。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于图卷积网络的归纳式微博谣言检测新方法
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
基于混合优化方法的大口径主镜设计
极地微藻对极端环境的适应机制研究进展
基于多孔玻璃新材料的三维微纳流体器件的飞秒激光制备与集成
飞秒激光在玻璃内诱导光折变微结构光学研究
飞秒激光曝光微晶玻璃光折变机理与应用研究
光纤微纳结构的飞秒激光制造理论与方法